
Master of Science Thesis in Industrial Engineering and Management

Department of Management and Engineering, Linköping University

June 2017

Artificial neural networks for financial time series
prediction and portfolio optimization

Samuel Björklund

Tobias Uhlin

Credits: 30HP
Level: A
Advisor: Jörgen Blomvall

Department of Management and Engineering,
Linköping University

Examiner: Ou Tang
Department of Management and Engineering,
Linköping University

ISRN: LIU-IEI-TEK-A--17/02920—SE

Abstract

Predicting the return of financial times series using traditional technical analysis and
widely used economic models such as the capital asset pricing model, has proven
to be difficult. Machine learning is a subfield of computer science, a concept that
is frequently being used within different domains and recurrently delivers successful
results. Artificial neural network is a product from the field of machine learning,
a black box model that if properly designed processes data, learns its dynamic and
subsequently provides an informative output. The objective of this thesis is to develop
artificial neural networks that predict time varying expected return of financial time
series with purpose of optimizing portfolio weights.

This thesis begins with a review of prevailing characteristics of financial times series,
and existing methods for estimating statistical properties. Background on artificial
neural network along with empirical case studies of their suitability within the fi-
nancial domain is put into a brief discussion vis-a-vis the efficient market hypothesis
where potential anomalies is highlighted. Based on the theoretical review, an inter-
disciplinary approach between machine learning and finance culminated into a model
that estimates the expected return of time series on a quarterly basis. To evaluate
the use of predictions of future returns in a relevant context a portfolio optimization
model, utilizing stochastic programming was built. The financial time series include
FX-rates and indices from different asset classes such as equities and commodities.

The results do not show any statistically significant improvement of the expected
return estimation compared to CAPM and random walk models. However, our model
outperforms a linear regression model for 12 of the 15 time series, which is in line with
the performance of previous studies.

Conclusively, no evidence is provided that the proposed model could predict accurately
and regardless of the accuracy, the vast portfolio turnover of the model is not congruent
with the context for which the model hypothetically would be used.

i

Acknowledgements

We would like to show our appreciation to our supervisor, Jörgen Blomvall - Thank
you for your support during the course of this thesis. Your engagement, comments
and ideas have contributed with inspiration and invaluable insights in the fulfillment
of this project. We are grateful for your expertise in the numerous courses that you
have taught us that are applicable to this thesis.

Also, we would like to express our gratitude to Söderberg & Partners for the opportu-
nity to perform this study. We truly appreciate your friendly and welcoming attitude, a
special thanks goes to Meng Chen for supportive advice and the assistance throughout
this thesis.

At last, we are grateful for the support from our family and friends. You have all been
a source of energy through good and hard times of our studies.

ii

Nomenclature

Abbreviations

Table 1 contains the most commonly used abbreviations in this thesis.

Table 1: Commonly used abbreviations in the thesis and the corresponding phrase

Abbreviation Phrase
AMH Adaptive Market Hypothesis
ANN/NN Artificial Neural Network/Neural Network
ARMA Autoregressive Moving Average
CAPM Capital Asset Pricing Model
EMH Efficient Market Hypothesis
EWMA Exponentially Weighted Moving Average
FFNN Feedforward neural network
FX Foreign Exchange
GARCH Generalized Autoregressive Conditional Heteroscedasticity
MPT Modern Portfolio Theory
MSA Model Selection Algorithm
MSS Model Selection data Set
OLS Ordinary least squares linear regression
PCA Principal Component Analysis
Q-Q Quantile to Quantile
RW Random Walk
SP Stochastic Programming

Machine learning terminology

Table 2 contains the most common machine learning specific terminology used in this
thesis. The statistics equivalent terms are provided when possible.

Table 2: Glossary of Machine Learning terminology

Machine learning Statistics

Backpropagation Repetead chain rule of partial derivatives
Error function Objective function
Input Explanatory variables
Model selection data set In-sample data set
Output Response variable
Test set Out-of-sample data set
Training Optimization
Weights Regression coefficients

iii

Contents

Abstract i

Acknowledgements ii

Nomenclature iii

1 Introduction 1
1.1 Company background . 5
1.2 Objective . 6
1.3 Limitations . 6
1.4 Disposition . 6

2 Scientific method 7
2.1 Literature review . 7
2.2 Phase 1: Forecasting using neural networks 8
2.3 Phase 2: Portfolio optimization . 10
2.4 Analysis and evaluation . 10

3 Theoretical framework 12
3.1 Economic theory . 12

3.1.1 Efficient Market Hypothesis (EMH) 12
3.1.2 Empirical properties of financial times series 13

3.2 Point estimation . 13
3.2.1 Properties of a point estimator 14
3.2.2 Point estimators . 15

3.3 Point estimation in finance . 17
3.3.1 Expected return . 18

3.4 Artificial neural networks paradigm . 21
3.4.1 Machine Learning . 21
3.4.2 Neurodynamics . 23
3.4.3 Architectures . 29
3.4.4 Classes of network . 36

3.5 Data preprocessing . 42
3.6 Optimization of neural network parameters 43

3.6.1 Purpose of network training . 43
3.6.2 Training, validation and testing data sets 43
3.6.3 Testing . 44

iv

CONTENTS

3.6.4 Error functions . 45
3.6.5 Problem structure . 46
3.6.6 Optimization of neural network weights 47
3.6.7 Generalization error . 53
3.6.8 Hyper-parameter optimization 56

3.7 Portfolio optimization . 58
3.7.1 Utility functions . 58
3.7.2 Mean Variance . 59
3.7.3 Stochastic Programming . 60
3.7.4 Scenario generation . 61

3.8 Evaluation . 64
3.8.1 Prediction of expected return 64
3.8.2 Portfolio optimization . 68

3.9 Empirical tests . 69
3.9.1 The use of data mining and neural networks for forecasting stock

market returns . 69
3.9.2 An investigation of model selection criteria for neural network

time series forecasting . 71
3.9.3 Much ado about nothing? Exchange rate forecasting: Neural

networks vs. linear models using monthly and weekly data . . . 73

4 Method 75
4.1 Data . 75

4.1.1 Software . 75
4.1.2 Processing . 75

4.2 Phase 1: Neural network . 76
4.2.1 Model selection algorithm . 77
4.2.2 Class . 78
4.2.3 Architecture . 79
4.2.4 Preprocessing . 83
4.2.5 Postprocessing . 84
4.2.6 Neurodynamics . 84
4.2.7 Error function . 85
4.2.8 Training . 86
4.2.9 Overfitting prevention . 87

4.3 Phase 2: Portfolio optimization . 88
4.3.1 Foreign exchange . 88
4.3.2 External specifications . 88
4.3.3 Portfolio optimization model . 88
4.3.4 Scenario generation . 90
4.3.5 Estimating the portfolio optimization parameters 92
4.3.6 Solving the portfolio optimization problem 93

4.4 Evaluation . 93
4.4.1 Phase 1 . 93
4.4.2 Phase 2 . 95
4.4.3 Summary of evaluation . 96

v

CONTENTS

5 Results & Analyses 97
5.1 Phase 1: Neural Network . 97

5.1.1 Error function . 97
5.1.2 Hyper-parameters . 100
5.1.3 Results from the optimized neural networks 102
5.1.4 Evaluation . 104
5.1.5 Sensitivity analysis . 106
5.1.6 Test for model convergence . 108

5.2 Phase 2: Portfolio optimization . 110
5.2.1 Results from estimated stochastic processes 110
5.2.2 Results from portfolio optimization 111
5.2.3 Evaluation . 114

5.3 Summary of results and analyses . 115

6 Conclusions & Discussion 116
6.1 Conclusions . 116
6.2 Discussion . 117
6.3 Ethical aspects . 120

Bibliography 120

A Variable declaration 128

B Data description 132

C Estimations of volatility and correlation 135

D Univariate distributions 140

E Plots for different error functions 143

F Resulting networks 150

G Out-of-sample performance 155

vi

Chapter 1

Introduction

It is widely accepted that predicting the future with 100 % accuracy is impossible.
However, the famous French mathematician Henri Poincaré once said "It is far better
to foresee even without certainty than not to foresee at all". What if an investor
could foresee the statistical properties of financial times series? This thesis will try
to improve estimation of expected return versus traditional models by using machine
learning with the purpose of generating higher portfolio returns and in the end earn
more money.

Modern Portfolio Theory (MPT) is a commonly used investment model that assumes
that an investor wants to maximize the expected return given an expected risk level,
commonly measured by the standard deviation of the return (Markowitz, 1952). Hence,
the model requires not only to estimate the future return, but also to estimate the risk
of the portfolio. In MPT an optimal portfolio is defined as a portfolio where the
investor is required to raise the risk level in order to achieve higher expected return.
(Markowitz, 1952) As such, the investor needs to ately be able to predict both the
return of a set of assets and the covariance matrix for the constituents in order to
maintain optimal allocation of the assets within the portfolio. Black and Litterman
(1992) argue that two fundamental problems with most quantitative portfolio models
are to come up with reasonable forecasts of the return, and that small differences in
the predicted expected return drastically changes the asset allocations of the portfolio.

The Efficient Market Hypothesis (EMH) suggests that the asset prices on capital mar-
kets fully reflect all the available information, and that new information instantly will
be incorporated in the price. This implies that an investor cannot exploit any available
information to forecast returns. Advocators of the EMH claim that the researchers’
and practitioners’ attempts to find predictive models are in vain since the only way
to generate excess return would be from luck or exposure to riskier assets. (Fama,
1970) However, Grossman and Stiglitz (1980) conclude that if information is costly
to obtain the investor will be compensated in accordance to the cost of obtaining the
information, later verified by Ippolito (1989).

Many widely recognized economic theories conform to the assumptions and implica-
tions of the EMH. One example is the random walk theory that claims that the price of
an asset is impossible to predict as it follows a random path (Malkiel, 1973). Another

1

CHAPTER 1. INTRODUCTION

examples is the Capital Asset Pricing Model (CAPM) that provides a framework for
predicting the return of an asset as a function of its risk in relation to the market
portfolio. Potential excess return is explained by the risk premium that the market is
pricing in to the asset (Sharpe, 1964; Lintner, 1965).

The EMH has been widely disputed. Malkiel (2003) pictures that a growing number
of financial economists and statisticians reject the EMH, claiming there is predic-
tive properties in both technical and fundamental information. For example, Lo and
MacKinlay (1988) reject EMH by showing that weekly stock prices are predictable
in the US, and Lo et al. (2000) propose a non-parametric kernel regression approach
to pattern recognition that has predictive properties. Even though Malkiel (2003)
expresses his belief in efficient markets in long term, he admits that short-term predic-
tive patterns do exist. One of the implications from the Adaptive Market Hypothesis
(AMH) described by Lo (2004) is that predictability in the available information must
arise from time to time, else the incentives to gather information leading to price
corrections would disappear. Timmermann and Granger (2004) describes that short-
term predictive properties do exist in financial markets, but conclude that no stable
forecasting patterns do exist, as these will self-destruct when publicly known. An im-
portant issue though is that researchers within financial forecasting may be reluctant to
publish well performing predictive models, and instead sell them to investment banks
(Timmermann and Granger, 2004), something that will possibly delay the process of
pattern self-destruction. As simple patterns get known by the public, and consequently
looses their predictiveness, new patterns will be increasingly complex, motivating the
use of machine learning and pattern recognition models.

An increasingly popular field of financial forecasting is the domain of machine learning,
and in particular Artificial Neural Networks (ANN) (Zhang et al., 1998). The worlds
largest investment manager, Blackrock Inc., has a firm belief that big data and machine
learning approaches will help produce alpha to investors (Blackrock, 2015). ANNs
provides desirable properties that some traditional linear and non-linear regression
models lack, such as being noise-tolerant (Zhang et al., 1998). Kima et al. (2004)
and Szeliga et al. (2003) among others outline neural networks with the property of
managing non-stationarity between data. Furthermore, the neural networks are data
driven without being restricted by initial assumptions about functional relationships
(Qi and Zhang, 2001). According to Hill et al. (1996) the neural networks have been
shown to be universal approximators of mathematical functions. Haykin (2009) states
that one of the main advantages with ANNs is that they are model-free, which means
that the functional relationship will take the form that fits best to the data without
explicitly defining the function beforehand. A general functional relationship can be
defined as y = g(x), where x ∈ RN×1 is a set of inputs that maps to a specific
output y ∈ R1×1 defined by g : RN×1 7→ R1×1. (Forsling and Neymark, 2011) Finding
a relationship between y and x through a model-free methodology does not require
predetermining the mathematical structure of g.

The term Neural Network has it origins in attempts to find mathematical represen-
tations of information processing in biological systems (McCulloch, 1943). The con-
cept is derived from the human brain’s ability of processing information and learning
methodology through the neural system (Agatonovic-Kustrin and Beresford, 1999).

2

Important assignments of our brain is controlling and steering the human body which
demands communication and new learning. These complex tasks are managed by our
nervous system which consists of interconnected cells called neurons. They are com-
municating by firing electrical signals through their existing connections. To enable
receiving and sending signals these neurons utilize their dendrites and axons. The
dendrites are the receivers which basically are ramifications of the neuron. The axons
are the carriers of the signals from the emitting neurons which branches out to estab-
lish contact with connected or new neurons to transmit the encoded information. The
transmission of information is mediated through the synapse located at the contact
point of the emitting neuron’s axon and receiving neuron’s dendrites. An incoming
signal triggers a release of chemical substances which enables the electrical signals to
create a voltage difference between the receiving neuron and its environment. If this
potential, or more commonly mentioned as activation level, is high enough it gener-
ates a spike and the electrical signal is propagated further to other neurons. How the
information is encoded in these electrical signals remains being an unsolved question
for today’s researchers where the strongest hypotheses argues for firing rate or firing
time. (Floreano and Mattiussi, 2008)

The human brain has a well developed learning system through its pattern recognition
and capability of associating actions through different stimulus e.g, feeling or smelling.
McCulloch (1943); Hebb (1949), two of earliest practitioners proposed that classical
conditioning is present by neural networks. Rolls and Treves (1998) outline a simple
example of associative learning: the sight followed up with the taste of food. Once
the stimulis sight and taste of a particular food have been repeated, the human brain
have created an association and paired the actions. Further, the taste of food is most
commonly eliciting salivation, and once the human brain has created this association
between sight and taste the sight of this particular food is now enough to produce
salivation while not necessary eating the food. Above example has a strong connection
to one of the earliest influences on the behaviorist school of psychology, the famous
experiment of Ivan Pavlov, in which he trained a dog to salivate at the sound of a
bell, by ringing the bell whenever food was presented (Hagan et al., 2014). With a
black box way of explaining this, the stimuli or action could be seen as the input to
the box, our brain, which processes the information by creating "hidden" relations
between previous inputs and outputs, and then generate a response according to how
the box previously associated this specific input with activities.

A fundamental and famous rule within neuroscience describing what happens in the
neural system when the human body is adopting and learning is given by Hebb (1949).
It was also from this statement a biological explanation of Pavlov’s experiment were
provided (Hagan et al., 2014). His theory is named the "simple learning rule" which
outlines that neurons repeatedly firing together will start a biological growth process.
This implies an increase in the effectiveness of the synapses’ ability of transmitting
electrical signals. An increased effectiveness in transmitting information implies an
improved way of communicating between our cells. Consequently, a new ability have
been learned or an existing improved. (Floreano and Mattiussi, 2008)

Since ANNs replicate the way the human brain process data it is a quite different way
of doing standard statistical analysis (Agatonovic-Kustrin and Beresford, 1999). The

3

CHAPTER 1. INTRODUCTION

method of artificial neural network have shown successful progress through the latest
pharmaceutical research in terms of pattern recognition. ANNs have been applied
on complex problems such as detection of cardiac abnormalities from physiological
measures and breast cancer from mammograms. A well developed ANN has also
shown the capability of exceeding physicians’ ability of diagnosing patients. The reason
behind its success within the pharmaceutical field is that the data encountered often
shows non-linear and complex characteristics that is hard to describe by traditional
statistical models. (Guenther, 2001) Its possibility of managing non-linearity without
previous knowledge of the characteristics of the data, such as a random unknown
sample, gives it a huge potential for further pharmaceutical research (Agatonovic-
Kustrin and Beresford, 1999).

Prices of assets on capital markets are complex stochastic processes with character-
istics that make the choice of statistical analysis method vital in order to generate
trustworthy predictions. Brock and de Lima (1995) conclude that future stock return
have a non-linear functional relationship to earlier stock return by carrying out several
mathematical tests for linearity. Zhang et al. (1998) state that forecasting time series,
such as prices of assets, has long been in the domain of linear statistics but conclude
that real world systems often are nonlinear since it is unreasonable that the realiza-
tion of a given time series is generated by a linear process. The non-linearity of time
series has been widely known during the latest decades and several models have been
developed, but a considerable downside from these nonlinear model is the required
assumption of a functional relationship i.e. they are not being model-free. A major
challenge in forecasting unknown time series is the formulation of a model, the func-
tional relationship is often hard to determine upfront as the data set often contains
a lot of noise and complex relationships, and a prespecified model will not capture
all the features. However, ANNs are unlike to the traditional models not assuming
linearity and are opposed to the latter methods by being model-free. (Zhang et al.,
1998) The successful results within pharmaceutical research together with is obvious
similarities of financial time series incentivize further investigations of its applications
in the financial field.

Enke and Thawornwong (2005) proves the prediction capability of ANNs within the
financial domain. In the study, three different ANN models outperformed a linear
regression model in forecasting performance. Furthermore, the researchers emphasize
the relevance of the predictions in portfolio management. Through several metrics a
portfolio, with its investments decision based on the ANN predictions, proved excess
return, by far, to a portfolio with predictions from linear regression. On top of that, the
ANN-portfolio managed to beat a buy-and-hold portfolio during 1992-1999, a strategy
associated with EMH.

Freitas et al. (2009) introduce a portfolio optimization model based on the efficient
frontier with ANN as predictors of the input parameters. To benchmark their model
they evaluate it versus the traditional mean-variance model as well as the correspond-
ing market index. With three different risk profiles they managed to confirm ANNs
relevance as prediction methodology through different statistical metrics such as t-test
of the excess return. Remarkable was that the high risk profile managed to achieve an
accumulated return of 291.9 % and 77.9 % above the benchmarks respectively during

4

1.1. COMPANY BACKGROUND

the investigated period of 142 weeks.

Even though several researchers, Enke and Thawornwong (2005); Freitas et al. (2009);
Hsu et al. (2016) amongst others, conclude that machine learning models can be used
as predictors to generate excess return on the market, the findings from researchers
are inconsistent likely depending the non-standardized design process of the ANNs
(Zhang et al., 1998). Nevertheless, ANNs are widely used by practitioners in the
financial industry including Merrill Lynch & Co., Salomon Brothers, Citibank, The
World Bank and more (Widrow et al., 1997).

Prediction and forecasting is ambiguous and fuzzy terminology within the field of
statistical research. Trying to define a future return without any flaws or with tiniest
error margin is an unreasonable task. A more proper definition of foreseeing return
would therefore be to investigate and determine the statistical characteristics of the
analyzed data, such as the expected return along with a deviation measure. The
aim of this thesis is to investigate and utilize research of ANNs to design a portfolio
optimization model that outperforms traditional theories and existing models. In terms
of portfolio optimization, estimating statistical characteristics is of highest importance
to avoid garbage in, garbage out performance with a well developed optimization
model. Highest marginal utility in terms of generating portfolio return can be achieved
by estimating expected return. Special focus of this thesis is hence to estimate expected
return using artificial neural networks.

1.1 Company background

This master thesis is requested by Söderberg & Partners (S&P) which is a Swedish
independent financial counseling company mainly within life insurance, pension and
wealth management. The company provides both traditional counseling and discre-
tionary investment management. Founded in 2004, S&P is a major player in the
Swedish counseling market and employs roughly 1.200 people. As a part of their cus-
tomer offer, the company provides recommendations of asset class allocation to their
customers quarterly. S&P wants to investigate whether machine learning, and neural
network in particular, can be used for predicting financial time series as input param-
eters to their asset class allocation suggestions. The purpose is to use this asset class
allocation1 as a complement to their existing model of picking assets within an asset
class, i.e. fund picking, see Figure 1.1.1 for a visualisation.

Figure 1.1.1: Visualisation of the asset class allocation and the allocation of assets
within an asset class.

1Hereafter we will use ’asset’ to refer to an ’asset class’ approximated by an index

5

CHAPTER 1. INTRODUCTION

1.2 Objective

To develop artificial neural networks that predict time varying expected return of
financial time series with purpose of optimizing portfolio weights.

1.3 Limitations

The model will be limited to forecast and manage a specific number of assets. The
assets will be FX-rates and indices of stocks, interest rate and commodity markets cor-
responding to the markets that S&P provides financial counseling within, see specific
assets in Appendix B. The indices are assumed to approximate diversified portfolios
of the underlying assets. As such, the portfolio universe correspond to common in-
vestment opportunities for a Swedish investor. The time frame for the forecasts and
the reallocations is set to a quarter, for which S&P provides regular counselling.

1.4 Disposition

In Chapter 2 the scientific method used for this thesis will be introduced. Chapter 3
will provide an in depth review of the applicable research to the thesis. In Chapter 4
the chosen method will be presented. In Chapter 5 we present the results of our model
as well as analyses and evaluation of it. Chapter 6 provides a discussion of the results
as well as a proposal of further research in the area. We also conclude our work.

6

Chapter 2

Scientific method

This chapter contains an overview of the methodology used to answer the objective,
i.e. predict time varying expected returns for financial times series in order to optimize
portfolio weights. A flow chart of the constituting parts is presented in Figure 2.1.1.
In addition, a literature review has to be conducted. In terms of financial times series,
the most important properties is the expected returns and covariances of portfolio
constituents. Artificial neural networks will be used to determine expected returns.
Traditional methods will be used to determine the covariances (i.e. volatility and
correlation). This determination will serve as a first phase major of the thesis. Once
the financial properties are determined, the portfolio weights can be optimized, which
will serve as the second major phase of the thesis. Upon conducting the two major
phases, the results will be evaluated, which will later on act as a starting point for
concluding the work.

2.1 Literature review

To be able to answer the objective, the research field financial forecasting as well
as research of neural networks will be studied, and presented in this thesis. First,
applicable economic theory and point estimation in finance will be reviewed. A broader
approach to the neural network field will be presented followed by an examination of
the usage of neural network within the domain of financial forecasting. Articles, papers
and books from a wide range of sources will be used to present a nuanced picture of the
research fields. The sources will primarily be accessed via databases that Linköping
University’s library provides access to. The quality of every source is then evaluated
in accordance to which journal it is published in (limited to articles), as well as its
number of citations by other papers found in the search engine Google Scholar.

7

CHAPTER 2. SCIENTIFIC METHOD

Empirical study initiation

Data collection

Neural network
model

Better?

Estimated parameters Evaluation of µn

Other
µ-estimators

Evaluation of Rn

Benchmarking
portfolio strategies

Asset1 Asset2 . . .
Portfolio optimization model

AssetM

Correlation
estimator

Volatility
estimator

Empirical study end

x

ρ
µb

σ
Yes, µn

µn,µb,σ,ρ

Rn,Rb1

Rb2

µn,µb

µn

No

Rn > Rb1,Rb2 ?

Figure 2.1.1: Flow chart of this thesis where red boxes correspond to start/end point,
green boxes as key involving phases, yellow boxes as evaluation parts and last grey
boxes as required complementary actions.

2.2 Phase 1: Forecasting using neural networks

Designing a neural network that predicts financial time series require a well thought
through process for picking the large number of parameters that needs to be decided
upon. Kaastra and Boyd (1996) provides an eight-step procedure for designing neural
networks for financial time series forecasting. Based on the vast number of design
choices, this eight-step procedure will be the starting point this thesis’s methodology
design, and is presented below:

Step 1: Variable selection The input parameters used in the neural networks
will be technical as well as fundamental. Although one would believe that the more
inputs the better, studies show that the predictive power will decrease if too much
information is fed to the system as increased noise eventually will confuse the network

8

2.2. PHASE 1: FORECASTING USING NEURAL NETWORKS

(Enke and Thawornwong, 2005). A review of metrics used for prediction in previous
research followed by a data selection model will consequently be introduced to find the
set of input parameters that maximizes the predictive power of the network.

Step 2: Data collection Data of the financial assets as well as the fundamental
data is to be collected via the Bloomberg database.

Step 3: Data preprocessing The data collected from the Bloomberg database will
be preprocessed to be suitable for the networks.

Step 4: Training, validation and testing sets The data set will be partitioned
into different subsets to fulfill different purposes in the design of the neural networks.
One set will be used for training the network to recognize patterns in the data. A
second set will be used for the model selection algorithm, and hence generate data
that will act as decision basis to choose the configuration that has best predictive
power on the specific time series. A third set will be used to provide a final evaluation
of the model. It is important to leave this third set truly untouched in order to not
bias the design of the networks.

Step 5: Neural network paradigms A common method to describe a neural
network is to introduce it as a node network. Gómez-Ramos and Venegas-Martínez
(2013) conclude that five types of neural network are used as forecasting models today.
In addition to different types of network there are lot of design parameters (hyper-
parameters) to choose between as well, which means that a neural network can be
constructed in an infinite number of ways. The architecture of the neural network
refer to how the network is organized. The network can be divided into three vital
sets of layers: input layer, hidden layers and output layer. Choosing the number
of layers and the number of nodes within each layer is crucial parameters. Within
neural network terminology these are called hyper-parameters. Increasing the number
of hidden layers provides the ability to generalize, but in practice a network with only
one or perhaps two hidden layer(s) and sufficient number of nodes is enough and have
historically shown good performance (Kaastra and Boyd, 1996). Several architectures
will be tested for every forecast, and then a model for selecting the number of hidden
layers and the number of nodes with the highest performance will be defined.

Further, an important design parameter is the activation function, which specifies how
the data is transformed between nodes. The choice of this function will be based on
the form of the output data.

Step 6: Neural network training In order for a network to be able to recognize
patterns it needs to be presented with observations from the training data set as
paired inputs and outputs, called supervised learning. This allows computation of the
optimal weights between the neurons. Training will be carried out with an optimization
heuristic to find the set of weights that minimizes the error function.

Step 7: Evaluation criteria Once the networks are trained they will be tested
on validation data sets. This allows comparison of estimated out-of-sample predic-
tive performance of different architectures. The network that has the best predictive

9

CHAPTER 2. SCIENTIFIC METHOD

performance on the training sets for every time series respectively will be assumed
to have the best generalization ability. This network will be used for evaluating the
neural network technique on the test set.

Step 8: Implementation The actual implementation of the neural network.

2.3 Phase 2: Portfolio optimization

The second stage of the thesis is to define a model for allocating the portfolio weights
optimally. There are several possible goals with the optimization, either the expected
return (MPT), or the utility of the expected wealth could be maximized where both
models involve a certain level of risk preference. In the former case the forecasts from
the neural networks and the correlation forecast might directly be used as input to
the model. In the latter case scenarios for the return has to be simulated and used as
inputs instead, forcing assumptions of the univariate distributions and the dependence
between the stochastic variables via a copula. Regardless model, the risk aversion
of the investor will impact the optimal portfolio weights, and in the end impact the
return of the portfolio.

2.4 Analysis and evaluation

The results from the financial forecasts and the portfolio optimization will be presented,
and evaluation will be conducted; one evaluation of the forecasting phase, and one
evaluation of the portfolio optimization phase.

In addition to fulfilling the objective of the thesis, it is of interest to evaluate its
relevance and thus whether the predictions of the neural networks are good. In order
for a prediction to be good, it has to be accurate. We will define accuracy as a
model that has less prediction error than well-recognized economic models. Below is
a description of how that will be determined.

The forecasting performance of the neural network will be evaluated against traditional
methods, e.g. CAPM, for forecasting expected return of the assets. A statistical
test will be defined to test whether the neural networks significantly can predict the
return better than the reference models. There exists several statistical tests, e.g.
Diebold and Mariano (1995), for predictive accuracy with model-free properties which
means that the model that generated the forecast does not need to be available. This
means that the same test can be used regardless of functional relationship, a desirable
property since the specific model will vary per output. The P-value, describing at
which significance level the null-hypothesis can be rejected, will be used to decide if a
model is significantly better. Regardless of statistical test used, a minimum of 95 %
significance will be employed to draw the conclusion that one forecast is better than
another.

The asset allocation will be evaluated using widely used single-factor models for port-
folio evaluation, such as Sharpe ratio, Treynor Index and Jensen’s alpha. The metrics
will be compared to the metrics’ of a portfolio of equally weighted assets used for the
portfolio optimization, as well as a portfolio based on the same portfolio optimization

10

2.4. ANALYSIS AND EVALUATION

model, but with another method for estimating the expected return. The evaluation
will hence provide basis of discussion regarding the model’s ability to generate higher
risk-adjusted return and a statistical measure on the significance of the excess return
on the market.

The evaluations will be used to prove if the suggested method statistically significant
is more accurate respectively perform better than the reference methods. Also, the
implications of different method choices and their impact on phase 1 and phase 2 per-
formance respectively will be discussed. Possible improvement areas such as different
choice of parameters in the model will be suggested as future research areas. Also, a
discussion of what implications our findings has to the efficient market hypothesis will
be conducted.

11

Chapter 3

Theoretical framework

This chapter presents relevant theories regarding the objective of this thesis. The
chapter is divided into nine parts, namely: Economic theory, Point estimation, Point
estimation in finance, Artificial neural networks paradigm, Data preprocessing, Opti-
mization of neural network parameters, Portfolio optimization, Evaluation, and Em-
pirical tests.

3.1 Economic theory

To understand the domain of expected return estimation in finance, this section aims
to introduce relevant economic theory that will aid the neural network design.

3.1.1 Efficient Market Hypothesis (EMH)

The EMH is a theory that stems from Fama (1970), which implies that prices on liq-
uid capital markets fully reflect all available information, and that new information
instantly will be incorporated in the price. An implication of EMH is that it is im-
possible to beat the market, since all available information already is incorporated in
the price, and the results by any attempts to do so is subject to the domain of chance.
There exists three common forms of the EMH, namely the weak form, semi-strong
form and strong form of EMH.

• Weak form: The weak form of EMH suggests that the prices on capital markets
fully reflect all past prices and volumes, and as such implies that the market
cannot be beaten using technical analysis.

• Semi-strong form: The semi-strong form of EMH suggests that the prices
on capital markets fully reflect all public information. A consequence of this
hypothesis is that neither technical nor fundamental analysis can be used to
beat the market.

• Strong form: The strong form of EMH suggests that prices on capital markets
fully reflect all public and private information. This means that consistent excess
returns of the market is impossible to achieve consistently, regardless of whether
the investor has insider information or not.

12

3.2. POINT ESTIMATION

(Hull, 2012)

3.1.2 Empirical properties of financial times series

In order to build a neural network model to estimate properties of financial time
series, it is important to understand the underlying fundamentals of asset returns.
Cont (2001) presents eleven so called stylized facts, which are non-trivial and general
statistical properties that are shared between a wide range of instruments and markets,
throughout different historical time periods. The eleven stylized facts from Cont (2001)
are summarized as follows:

1. Absence of autocorrelations: There is often a lack of autocorrelation in asset
returns, except for small intra-day time periods (∼ 20 minutes) and weekly and
monthly returns

2. Heavy tails: The unconditional distribution of returns seems to exhibit heavy
tails or Pareto-like tails, however the exact form of the tails is hard to determine

3. Gain/loss assymetry: Stock prices and stock index exhibit large drawdowns
but not as large movements upwards (FX-rates disregarded)

4. Aggregational gaussanity: As the time period over which the return is cal-
culated increases, the distribution looks increasingly as a normal distribution

5. Intermittency: At any time scale the asset returns exhibit a high degree of
variability, quantified by the presence of irregular bursts in different volatility
measures of time series

6. Volatility clustering: Volatility exhibits a positive autocorrelation over several
days, which implies that high-volatility events are clustered in time

7. Conditional heavy tails: The residual time series exhibits heavy tails even
after correcting for volatility clustering via e.g. GARCH-models (see Appendix
C), although they are less heavy than before clustering correction

8. Slow decay of autocorrelation in absolute returns: The autocorrelation
of absolute returns decreases as the time lag is increased, sometimes interpreted
as a long-range dependence sign

9. Leverage effect: Most volatility measures and return of an asset are negatively
correlated

10. Volume/volatility correlation: Trading volume is correlated with all mea-
sures of volatility

11. Asymmetry in time scales: Long time scales measures of volatility predict
short time scales volatility better than the contrary

3.2 Point estimation

Expected value, variance and correlation are common parameters of common prob-
ability density functions. In statistics, these are usually unknown, and consequently

13

CHAPTER 3. THEORETICAL FRAMEWORK

estimated using observations of the random variable of interest. As this thesis aim to
estimate expected value using neural networks, we will first examine statistical theory
on point estimation.

Let x1, x2, . . . , xn be observations of the random variables X1, X2, . . . , Xn with density
function f(x;θ) that contains unknown parameters θ. We look for an approximate
value of θ, i.e. a point estimation, θ̂, based on x1, x2, . . . , xn. Blom et al. (2005) define
a point estimation as a function of observed measured values defined by

θ̂ = g(x1, x2, . . . , xn). (3.2.1)

The fix value θ̂ is observations of the estimator vector Θ̂

Θ̂ = g(X1, X2, . . . , Xn). (3.2.2)

3.2.1 Properties of a point estimator

The distribution for the single random variable Θ̂ determine what values θ̂ can adopt,
hence investigating whether the point estimator Θ̂ is biased, consistent and efficient is
of certain interest in statistical theory. The estimator is called unbiased if

E[Θ̂] = θ (3.2.3)

and biased if equality does not apply. The bias is defined as E[Θ̂]−θ. Also the variance
of the estimator is of interest, and can be determined as V ar[Θ̂]. The variance of the
estimator can be estimated using the sample variance σ̂2 for n observations of the
estimator θ̂i as

σ̂2 =
1

n− 1

n∑
i=1

(θ̂i − θ̄)2 (3.2.4)

where θ̄ = 1
n

∑n
i=1 θ̂i is the average of the sample of estimations. (Blom et al., 2005)

If large samples are available, asymptotic properties of the estimator can be of interest.
An estimator Θ̂n for sample size n is said to be consistent if for every ε > 0

Pr(|Θ̂n − θ| > ε)→ 0, when n→∞. (3.2.5)

Blom et al. (2005) formulates the following theorem

Theorem 3.2.1 If E[Θ̂n] = θ and V ar[Θ̂n]→ 0, when n→∞, then Θ̂n is a consis-
tent estimate of θ.

If we have two unbiased estimators Θ1 and Θ2, then Θ1 is said to be more efficient
than Θ2 if

V ar[Θ1] < V ar[Θ2]. (3.2.6)
14

3.2. POINT ESTIMATION

3.2.2 Point estimators

In statistical theory there exist numerous point estimators, with different properties
that are beneficial in different settings. Following this, a few of the most common
point estimators are described.

Least squares estimation

Consider a sample x1, x2, ..., xn of the random variables X1, X2, ..., Xn. We assume
that E[Xi] = µi(θ) where i = 1, 2, . . . , n and µi(θ) function that is known except for θ.
Consequently, Xi = µi(θ) + εi where εi usually are assumed to be i.i.d. with expected
value 0. The squared sum error is now defined as

Q(θ) =
n∑
i=1

(xi − µi(θ))2. (3.2.7)

In the least squares estimation, the θ̂ that minimizes Q(θ) is the estimate of θ, i.e.

θ̂ = θ∗ = arg min
θ

Q(θ). (3.2.8)

If all the µi(θ) are identical, we get dQ
dθ

= −2µ′(θ)
∑n

i=1(xi − µ(θ)) which equals to 0
(Q adopts a global minimum) when

∑n
i=1(xi − µ(θ)) = 0 ⇔ µ(θ) = 1

n

∑n
i=1 xi = x̄.

The value of θ can now be solved out of this relationship, and act as the least square
estimate.

(Blom et al., 2005)

Maximum likelihood estimation

A maximum likelihood estimation (MLE) defines the value for unknown parameters
that are most likely for a set of samples with a known probability function. Consider
a sample x1, x2, ..., xn of the random variables X1, X2, ..., Xn with joint probability
function pdf(x1, x2, ..., xn|θ) where θ is a vector of unknown parameters. The likelihood
function is defined as Li(θ) = pdf(x1, x2, ..., xn|θ) and the set of θ that maximizes the
likelihood function is defining MLE, θ∗ as

θ∗ = arg max
θ

Li(θ). (3.2.9)

Hence, as the estimated vector we have θ̂ = θ∗ In the case of independent and identi-
cally distributed sample the likelihood function can be written

Li(θ) = pdf(x1, x2, ..., xn|θ) =
n∏
i=1

pdf(xi|θ). (3.2.10)

15

CHAPTER 3. THEORETICAL FRAMEWORK

For computational purposes, it is often easier to maximize the log-likelihood function
in (3.2.11) which has the same likelihood estimator θ∗ as the natural logarithm is a
strictly increasing function.

lnLi(θ) = ln
(n∏
i=1

pdf(xi|θ)
)

=
n∑
i=1

ln
(
pdf(xi|θ)

)
(3.2.11)

(Blom et al., 2005)

Multiple linear regression

Linear regression is a model that provides a relationship between a number of explana-
tory variables to a specific response variable. The methodology is to fit a linear relation
by using previously observed data points of both the explanatory variables as well as
the response variable. The simplest way of doing linear regression is by using one
explanatory variable, a model named simple linear regression. For the observations
i = 1, 2, . . . , n the model is denoted

yi = α0 + α1xi + εi (3.2.12)

where the parameters α0 and α1 describes the intercept and the slope of the line
respectively. One could extend simple linear regression to multiple linear regression
and use p number of explanatory variables, hence the model is written as

yi = α0 + α1x1i + α2x2i + . . .+ αpxpi + εi (3.2.13)

where the residual εi corresponds to the difference between the response observed and
the response calculated from the model calculated as εi = ŷi − yi. The vector α∗
consisting of the optimal choices of the parameters α0, α1, . . . , αn are calculated by
optimizing

α∗ = arg min
α

n∑
i

ε2i . (3.2.14)

Thus, the calculated linear regression model can, with known dependent variables,
approximate an out of sample response variable as

ŷ = α0 + α1x1i + α2x2i + . . .+ αpxpi. (3.2.15)

(Blom et al., 2005)

16

3.3. POINT ESTIMATION IN FINANCE

3.3 Point estimation in finance

This section describes point estimation in finance, and in particular research on how
the expected return can be estimated. Estimations for volatility and correlation can
be found in Appendix C.

The future price of a financial asset is by its nature unknown. Consequently, several
models have been defined in order to be able to deal with the uncertainty of the
prices. The uncertainty is often measured in terms of price changes given a specific
time horizon, such as absolute price change, relative price change, or log price change
(J.P.Morgan/Reuters, 1996). The absolute price change at time t is defined as

S∆t = St − St−1 (3.3.1)

where St refers to actual time series spot price at time t. Relative price changes,
referred to as returns, are often preferred though, as these facilitate comparison be-
tween assets on different price levels (J.P.Morgan/Reuters, 1996). The percent return
is defined as

rperct =
St − St−1

St−1

=
St
St−1

− 1. (3.3.2)

The log price change, log-return (or continuously compounded return) is defined as

rlogt = ln

(
St
St−1

)
. (3.3.3)

Log-returns are additive across time interval, T , i.e. multi-period returns are computed
by a sum of the single-period returns. Percentage returns are additive across assets i,
i.e. the return of a portfolio is calculated as a weighted sum of the individual returns.
Conclusively, the choice of return metric should be based on the specific application
as aggregation convenience differ between the two metrics. Table 3.3.1 provides an
overview of the mathematical expressions of the aggregations.

Table 3.3.1: Aggregations of relative returns across time and assets respectively

Type Time aggregation Asset aggregation

Percentage
return rperciT =

∏T
t=1(1 + rpercit)− 1 rpercpt =

∑N
i=1wir

perc
it

Logarithmic
return rlogiT =

∑T
t=1 r

log
it rlogpt = ln(

∑N
i=1 wie

rlogit)

(J.P.Morgan/Reuters, 1996)

17

CHAPTER 3. THEORETICAL FRAMEWORK

Following this, models for estimating the return, the volatility and the correlation will
be described. These are important parameters to estimate when building a portfolio
optimization model, and since alternative models will be used as a benchmark of the
ANN performance a description of the research body on the topic is needed.

3.3.1 Expected return

The expected value of a random variable X is denoted E[X] = µ, and can if the
probability density function, f(x), is known be calculated as

∫ −∞
∞ xf(x)dx. In practice,

the probability function is rarely known and therefore the expected value has to be
estimated. (Blom et al., 2005)

The historic mean of the returns do, according to Amenc and Sourd (2003), provide an
unbiased estimate of the expected return1, for the following period, and can be used as
a forecast of the future performance. Accordingly Black and Litterman (1992) claim
that the historic mean of returns often is used to predict future returns, but do also
stress the fact that the metric has poor predictive performance as future returns are
somewhat independent of historic returns. The arithmetic mean of historic returns is
defined as

µ̂ = r̄ =
1

T

T∑
i=1

ri (3.3.4)

and is suitable for log-returns because of its additive property. Using arithmetic mean
for percentage returns will overestimate the result, but can be used to estimate the
mean percentage return during a period. For percentage returns, the geometric mean
is better suited and is defined as

µ̂ =

(T∏
i=1

(1 +Ri)

)(1
T

)

− 1 (3.3.5)

giving unbiased mean during the period. (Amenc and Sourd, 2003) The arithmetic and
geometric mean provides an equally weighted average of the past returns. An investor
that uses historic mean as estimator for future return is faced with the choice of how
much past data to use. Amenc and Sourd (2003) points out the fact that the metric will
vary vastly depending on which period is chosen, and that the standard practice is to
choose three to five years weekly return data. However, the assumption that the past
will reproduce itself is rarely true, leading to the development of models that weigh
the past returns unequally. Box and Jenkins (1970) popularized the Autoregressive
Moving Average (ARMA) model family. The simplest model AR(p) uses a linear
function of p past returns to predict the expected return µ̂n, and is defined as

µ̂n = c+

p∑
i=1

airn−i + εn (3.3.6)

1Expected return in this thesis refers to the expected value of the return

18

3.3. POINT ESTIMATION IN FINANCE

where c is a constant, ai for i = 1, 2, . . . , p is the weights associated to each past return
rn−i for i = 1, 2, . . . , p, and εn is an error term. The moving average MA(q) model
uses a linear function of q + 1 weighted random variables εi, usually assumed to be
independent identically distributed (i.i.d.) from a normal distribution with zero mean,
i.e. ε ∼ N(0, σ2). The model is defined as

µ̂n = µ̂n−1 + εn +

q∑
i=1

biεn−i. (3.3.7)

The ARMA(p,q) model is a combination of the AR(p) and the MA(q) models and is
defined as

µ̂ = c+ εn +

q∑
i=1

airn−i +

p∑
i=1

biεn−i. (3.3.8)

Another model for estimating the return is the Capital Asset Pricing Model (CAPM),
which is widely recognized among practitioners and researchers e.g. Sharpe (1964);
Lintner (1965). (Amenc and Sourd, 2003) CAPM is, contrary to ARMA models, a
development of the EMH. In CAPM the expected return of an asset is related to the
expected return of the market portfolio rM and the riskfree rate rf . The expected
return for an asset is in CAPM defined as

µ̂ = rf + β(rM − rf). (3.3.9)

The market portfolio is the hypothetical portfolio that contains all the world’s assets,
weighted according to their relative market capitalization. The return of this portfolio
is equal to the return of the market as a whole. The riskfree rate is intuitively the
theoretical return of an asset with zero risk. The relationship between an assets’ return
and the return of the market portfolio less the riskfree rate is assumed to be linear.
The model is a so called single-factor model, i.e. the expected return can be solely
estimated based on the beta value β which is defined as

β =
σi,M
σ2
M

=
σiρi,M
σM

. (3.3.10)

Beta can also be estimated with linear regression of past observations. As such, the
analyst has to determine how much past data to use in CAPM as well, an disadvantage
shared with the mean of historic returns. In practice the return of the market portfolio
has to be approximated with the return of a well-diversified portfolio as no market
portfolio in the theoretical terms exists. The riskfree rate is often approximated with
a three-month treasury bill, as the credit risk is close to zero. Although widely used,
CAPM has received criticism from researchers. Roll (1977) argues that CAPM can
not be verified as the market portfolio is impossible to observe, and (Fama and French,
1970) invalidates its use in practical applications.

The main assumptions behind CAPM is formulated by Amenc and Sourd (2003) as:

19

CHAPTER 3. THEORETICAL FRAMEWORK

1. Investors are risk averse and seek to maximise the expected utility of their wealth
at the end of the period

2. When choosing their portfolios, investors only consider the first two moments of
return distribution: the expected return and the variance

3. Investors only consider one investment period and that period is the same for all
investors

4. Investors have a limitless capacity to borrow and lend at the risk-free rate

5. Information is accessible cost-free and is available simultaneously to all investors.
All investors therefore have the same forecast return, variance and covariance
expectations for all assets

6. Markets are perfect: there are no taxes and no transaction costs. All assets are
traded and are infinitely divisible

Several extensions to CAPM have been proposed that incorporate additional factors,
so called multi-factor models. Example of those is the Fama French three factor model
that in addition to the market return adds a book-to-market2 factor and a size3 factor.
The Carhart four factor model is an extension of the Fama French three factor model,
and adds a momentum term. (Amenc and Sourd, 2003) A recent paper by Fama and
French (2015) considers the five factors market, book-to-market, size, profitability4

and investment5.

The CAPM is not valid on foreign exchange rates. Instead several other theoretical
models have been proposed throughout history, both based on economic theory, such
as the uncovered interest rate parity, purchasing power parity, as well as time series
analysis, such as AR. Meese and Rogoff (1983) compare the performance of several
structural and times series models6 for predicting the FX rate, and finds that none of
these models do outperform a random walk model. This is in line with the findings
of Mussa (1986), who states that "The natural logarithm of the spot exchange rate
follows approximately a random walk", as well as the more recent study by Cheung
et al. (2005) that draw the conclusion that none of the evaluated models7 outperform
random walk on the metric MSE, but some of them do statistically outperform the
random walk model on a direction-based prediction. They also conclude that a model,
specifications and currencies that work well in one period might not do in another
period.

2Book value of the equity in relation to the market value of the equity
3Market capitalization
4Operating profitability
5Total assets growth
6Models evaluated: Forward rate, Frenkel-Bilson, Dornbusch-Frankel, Hooper-Morton, Univariate

autoregression, vector autoregression. Time horizon 1-12 months. FX-rates: USD/GBP, USD/DM,
USD/JPY.

7Models evaluated: Interest rate parity, Productivity based models, composite specification incor-
porating the real interest differential, portfolio balance and nontradables price channels, purchasing
power parity and the Dornbusch-Frankel sticky price monetary model. Time horizon: 1, 4, 20 quar-
ters. FX-rates: USD/CAD, USD/GBP, USD/DM, USD/JPY.

20

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

3.4 Artificial neural networks paradigm

In this thesis the paradigm of an artificial neural network refers to the different charac-
teristics one could set when determining a neural network model. Before introducing
the different paradigms of a network one must determine if an ANN is the right ap-
proach to solve the problem encountered. If so, there is of highest interest to use the
right network that suits the problem. Hence, we will introduce the statistical problem
definition of the broader field, machine learning. We will define the notions learning
rule and learning task i.e. what approach to use to make the algorithm learn and
respectively the problems that is encountered within machine learning, and further on
present some tasks where a neural network approach is suitable.

3.4.1 Machine Learning

Neural network is an approach within the field of machine learning, which basically
and with a short description means, constructing algorithms that solves problems and
make predictions. This is done by learning the characteristics and testing the algorithm
on sample data to enable entering static equilibrium to a specific output given a new
specific data set of inputs. (Bishop, 2006)

Learning rule

The learning methodology, i.e. the learning rule, of the algorithm is classified into
supervised and unsupervised learning. Supervised learning is a method that presents
the algorithm with both input and the subsequent output data. The input data targets
the specific output data and the algorithm learns the mapping procedure. Whereas
in unsupervised learning there is no corresponding target output of the input and the
model is expected to determine them by itself, a sequence of input is provided but no
corresponding output values. (Haykin, 2009; Bishop, 2006)

General learning tasks

The task or the problem that machine learning can encounter are many, but there are
two more commonly encountered where a machine learning approach is used. Those
are directly connected to what the desired output of the model is. First, the regression
problem where the goal is to find a relationship between a set of independent variables,
and the dependent variables to identify what happens with the continous dependent
output when an independent input variable changes or a new set of input data is
provided. This is widely used in the field of prediction, forecasting and function
approximation. A simple regression problem example is the pricing of a house given
information of relevant specifications such as size, location and number of rooms.
If the problem is to generate binary outputs, y ∈ [0, 1], i.e. a yes or no analysis
dependent on a input set, or to categorize a new observation to specific classes then
the problem is mentioned as a classification problem. The same problem of determining
the price of a house stated as a classification problem could be formulated by letting
the algorithm determine if its pricey or cheap, by letting 0 correspond to pricey and 1
cheap respectively. Both regression and classification problems tend to use the learning

21

CHAPTER 3. THEORETICAL FRAMEWORK

methodology supervised learning. If there is of interest to classify observations without
determining its output classes then the corresponding problem with an unsupervised
learning methodology is clustering. Other problems where unsupervised learning often
is applied is to determine the unknown distribution of a data set or when a dimension
reduction is of interest. (Haykin, 2009; Bishop, 2006)

Neural net specific learning task

Haykin (2009) enhances four general problems where modelling with ANN is relevant:
Pattern Association, Pattern Recognition, Function Approximation and Control. A
distinction of pattern recognition and pattern association is appropriate to avoid mis-
nomer. Both of them are specialized forms of mapping input to a specified output
by adjusting the weights of the network, where the learning methodology supervised
learning is utilized.

Pattern recognition is also referred to as pattern classification and formally defined
as the process where a received pattern/signal is assigned to specific binary classes.
Thus the pattern recognition problem in the terminology of machine learning simply
is a classification problem (Bishop, 2006; Haykin, 2009; Hagan et al., 2014).

Pattern association implicate utilizing a brain-like associative memory which con-
sists of two basic phases:

• Storage phase, which refers to the training of the network that teaches it to
associate similar input to the same output.

• Recall phase, which involves the retrieval of a memorized pattern in response to
the presentation of a noisy version of input to the network. They are problems
where the nets, for which involved weights are determined in such way that the
net can store a set, M , of pattern associations. Thus, an important question for
a pattern association problem is: how many patterns can be stored until the net
starts to forget? (Fausett, 1994)

Function approximation also referred to as regression in the broader field, are
type of problems where a net should approximate an unknown function, f(·) such
that the mapping function, g(·), describing the mapping is realized by the network
according to following formula

||g(X)− f(x)|| < ε (3.4.1)

where ε is a minor prespecified value.

Controlling problem aim to track a specific reference signal, yref , with the output,
y by studying and minimizing an error signal, described as ε = yref − y where y is the
output from the system. This means utilizing feedback of the output as input in the
next time step to minimize ε, in other words controlling problem means to invert the
input-output mapping. (Haykin, 2009)

22

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

Hagan et al. (2014) highlight 4 relevant problems as well: Function approximation,
Pattern recognition, Clustering and Prediction where the first two is defined in the
same way as by Haykin (2009) and clustering is defined as by the general machine
learning problem.

Prediction is similar to the function approximation problem and falls under the
categories of system identification, time series analysis or dynamic modelling. The
basic idea is to predict future data points listed in time order. For example a control
engineer might want to predict a future value of the concentration of some chemical.
A dynamic neural network is vital to use in prediction problems. (Hagan et al., 2014)

Kaastra and Boyd (1996) emphasize two commonly used terms to describe a network:
the neurodynamics and architecture where the combination along with the class define
its paradigm. It will be obvious that the paradigm will mostly depend on the specific
problem to solve, further Kaastra and Boyd (1996) conclude that there is an infinite
number of ways to design a neural network and defining the learning task is a crucial
part in order to succeed (Haykin, 2009; Hagan et al., 2014).

3.4.2 Neurodynamics

The way one artificial neuron processes data and how its inputs are combined into cal-
culations to carry on information to another neuron is referred to as the neurodynamics
of the network. McCulloch (1943) constructed the first artificial neuron with inspira-
tion from of first order logic sentences, the neuron had the property of processing two
binary inputs and generate a single binary output from its activation function. The
model had significant constraints but could be used to implement boolean logic func-
tions. Neural networks can be described as series of functional transformations where
the transformation and mathematical calculations done from an ANN are a complex
composition of the calculations from each node. To maintain non-linearity properties
but still being model-free, not determining the setup of this complex composition,
a neural network utilizes a functional relationships where its parameters are adap-
tive to the data. To understand these series of transformation one must understand
the neurodynamics. To simplify the description of the neurodynamics, i.e. how one
node operates, an illustration of a single-layer and one node ANN, with its including
calculations, is illustrated in Figure 3.4.1.

...

w1

w2

wM

x1

x2

xM

One artifical neuron

M∑
j=1

wjxj ϕ(·)
ya

Figure 3.4.1: Example of an artifical neuron

23

CHAPTER 3. THEORETICAL FRAMEWORK

First, a linear combination, called activation, a(x,w), of the input vector x ∈ RM×1

and the synapses or weights from each input w ∈ RM×1 are created as

a(x,w) =
M∑
j=1

wjxj. (3.4.2)

Secondly, the activation are transformed to the output of the node, z, using a function,
ϕ(·), called activation function by

y = ϕ(a(x,w)). (3.4.3)

Different activation functions can be utilized in different parts of the network. The
activation function in the hidden layer is preferably non linear in such way that each
output is a non linear combination of linear combinations of the inputs. A non lin-
ear property of the activation function is required to make advantage of a multilayer
network, since the result of feeding a signal through two or more layer of linear process-
ing activation functions are possibly obtained using a single layer, it follows from the
fact that composing successive linear transformations is itself a linear transformation
(Fausett, 1994; Bishop, 2006). Further, it is desirable that the activation function is
differentiable to facilitate the training phase, which is described in Section 3.6. The ac-
tivation function limits the amplitude to a preferred closed interval, typically between
[0, 1] or [−1, 1] since it tend to increase stability while learning and also it is useful
to maintain the normalization of the input data. Three of the most commonly used
activation functions are the heavy side-, identity- and sigmoid function. The heavy
side function or threshold function, ϕ1, of some random input x ∈ R is described as

ϕ1(x) =

{
1 if x ≥ 0

0 if x < 0
(3.4.4)

and an illustration of the function can be seen in Figure 3.4.2.

−2 −1 0 1 2

0.5

1

1.5

Figure 3.4.2: Heavyside step function

A neuron with this activation function is referred to as the McCulloch-Pitts model
because of their pioneering work in the neurodynamic field. The properties of the
model is that it generates a binary output z ∈ [0, 1] (Haykin, 2009).

24

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

The identity function is a simple linear function through the origin, ϕ2, of some random
input x ∈ R and is described as

ϕ2(x) = x, ϕ2(x) ∈ R. (3.4.5)

In order to limit the amplitude one could saturate the identity function to the ramp
function, also known as the piecewise linear function, ϕ2, of some random input x ∈ R
which is described as

ϕ3(x) =


1 if x ≥ 1

x if 0 ≤ x < 1

0 if x < 0

(3.4.6)

and an illustration of the ramp function can be seen in Figure 3.4.3.

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

Figure 3.4.3: Ramp function

The function is sometimes referred to as the saturating linear function because the
linearity is fixed to a specific interval (Zilouchian, 2001).

Sigmoid functions

The sigmoid functions is a family of functions having an S-shaped curve. The sigmoid
functions is by far the most commonly used because of its characteristics of allowing
non linearity and also being differentiable. Another advantage is that the derivative of
the sigmoid function can be expressed in terms of the individual function itself which is
useful when training the network (Zilouchian, 2001). Depending on preferred output,
one could choose between two widely used sigmoid functions, the logistic sigmoid and
the bipolar sigmoid functions. The logistic sigmoid function, ϕ4, of some random input
x ∈ R, is preferable when the objective is to approximate functions that maps into
probability spaces. The logistic sigmoid function is described as

ϕ4(x) =
1

1 + e−αx
, ϕ4(x) ∈ [0, 1] (3.4.7)

and is illustrated in Figure 3.4.4.

25

CHAPTER 3. THEORETICAL FRAMEWORK

−6 −4 −2 0 2 4 6

0.5

1
1

1+e−x
1

1+e−2x

1
1+e−0.5x

Figure 3.4.4: Logistic sigmoid function

where the parameter, α defines the slope of the function.

The hyperbolic tangent function (TanH) and hyperbolic tangent sigmoid function
(TanSig) are rescaled versions of the logistic sigmoid to the range [−1, 1], thus men-
tioned as the bipolar sigmoids. The advantage of these rescaled versions is that they
suits data input around zero because the magnitude of the derivatives is greater for
these values which enables a faster training. Further, using an activation function
that outputs in the range [0, 1] makes big negative values of the input saturating to
zero which has a negative effect on the training because they get stuck in the current
state and consequently the computational time increases. Another problem of only
having positive values of the output is that all of the weights that feed into a node can
only decrease or increase all together, in the training phase, for a given input pattern
which creates an inefficient "zigg-zagging" update path (LeCun et al., 1998). TanH
and TanSig are very similar where the steepness of the slopes differentiates them. As
such, there is a trade off between getting a low computational time and an accurate
mapping. However, when the computational time is not a major issue the TanH, ϕ4,
is mostly used and defined as

ϕ5(x) =
ex − e−x

ex + e−x
(3.4.8)

and is illustrated in Figure 3.4.5.

−6 −4 −2 2 4 6

−1

−0.5

0.5

1
TanSig
TanH

Figure 3.4.5: Bipolar sigmoids

Within the field of machine learning it is common to introduce a dummy variable,
which most commonly is used modelling an neural network model as well. This is an

26

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

external node, x0, with fixed value at +1 that along with its corresponding weight, w0

allows for any offset in the transfer function and thus enables a shift of the function
left or right depending on positive or negative value of w0. Simplified, the purpose
is to ensure that the activation function can produce all outputs no matter what the
weighted sum of the input. E.g. if the sum of the weighted inputs is three, the bias
node enables the neuron to still output 0. Figure 3.4.6 describes the shift of a logistic
sigmoid function for different w0.

−6 −4 −2 0 2 4 6

0.5

1
w0 = 0
w0 = −3
w0 = 3

Figure 3.4.6: Sigmoid function

By expanding the input set with the bias node the activation introduced by (3.4.2) is
reformulated to

a(x,w) =
M∑
j=1

wjxj + bw0. (3.4.9)

By defining the bias node as a new input, x0 in the external input vector (3.4.9) is
equivalent to

x :=

[
x0

x

]
a(x,w) =

M∑
j=0

wjxj.

(3.4.10)

The expanded single layer network with a bias node is illustrated in Figure 3.4.7.

27

CHAPTER 3. THEORETICAL FRAMEWORK

...

w0

w1

w2

wM

x0

x1

x2

xM

One artifical neuron

M∑
j=0

wjxj ϕ(·)
ya

Figure 3.4.7: Artificial neuron with bias node

When expanding the single layer network, consisting of one individual node, to a
multilayer network of L layers with Ml nodes in each layer the general artificial node
is denoted as h(l)

j . Further, the output of an artificial node, y, corresponds to an input,
xj, for the nodes in the next layer. Hence, we declare yj as one of the final outputs of
a network and give a more suitable representation of the output from node h(l)

j to z(l)
j .

The mathematical description of a random output would be a recursive formula of its
activation function from previous outputs as

z
(l)
jl

= ϕ

(
Ml−1∑
jl−1=0

w
(l−1)
jl−1,jl

ϕ

(
· · ·

M2∑
j2=0

w
(2)
j2,j3

ϕ

(M1∑
j1=0

w
(1)
j1,j2

xj1(t)

)))
. (3.4.11)

A graphical description of the general node within the general model of network would
thus be as illustrated in Figure 3.4.8.

28

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

...

wl−1
0j

wl−1
1j

wl−1
2j

wl−1
Mj

zl−1
1

zl−1
2

zl−1
M

xl−1
0

General artifical neuron
zlj

Figure 3.4.8: The general artificial neuron

Note that a bias node is added to each layer of the network.

3.4.3 Architectures

Putting multiple neurones together and a neural network is constructed, this arrange-
ment of neurons into layers and how it is intimately linked is often referred to as the
architecture of the network (Fausett, 1994). The total number of layers, L, can be
categorized to three different type of layers, the input layer, hidden layer(s) and the
output layer. Within each layer, l, the designer must decide how many nodes, Ml,
each layer should consist of. Setting up the architecture when modelling the neural
network thus requires determining lot of parameters.

Input

According to Kaastra and Boyd (1996) the number of nodes in the input layer, which
in this report is denoted as a vector, x ∈ RM1×1, is in the general case the most simple
parameter to determine since each input domain after preprocessing, described later
in this report, correspond to one neuron. For the casual problem, the number of input
nodes is well defined and it is the number of independent variables associated with the
problem. For instance if you should design a neural network for kite-flying conditions
the inputs might be air temperature, wind velocity and humidity, i.e. three inputs
(Hagan et al., 2014).

Determining what inputs to use when constructing neural networks describing financial
time series is a harder nut to crack since the external specifications and the dependen-
cies of the output is unknown. Researchers have utilized both technical data as well
as fundamental data as inputs, where technical data is referred to as the processed
data of the specific time series, e.g. time lagged returns, moving average, relative
strength index and momentum etc., and fundamental data is the information from
macroeconomics, microeconomics and business specific economy. i.e. posts from in-

29

CHAPTER 3. THEORETICAL FRAMEWORK

come statements and the balance sheet. According to Zhang et al. (1998) one can not
just choose a set of input variables arbitrarily and require the network to learn and
predict a specific variable. The input set is the most critical decision variable to choose
and the old adage "garbage in, garbage out" complies. This demands the designer to
spend extensive time selecting input (Walczak, 2001). From the literature there is no
consistent results indicating that some specific model is better than another. Some
authors claim that the neural network is able to learn which inputs that matter and
the weights are adjusted to zero if the input variable in question is redundant. Hence,
they argue that the number of input is not crucial as long the inputs chosen is enough
to provide sufficient information from all involving domains. Others advocate that too
many input variables reduces the generalization performance because of the tendency
of over-fitting the data. Also, the more inputs that is added the more computational
complexity is added. Conversely too few inputs will under-fit the data, however both
situations results in a bad out of sample generalization (Walczak, 2001; Zhang et al.,
1998).

Knowledge-based Selection is a possible approach to determine what inputs that
should be used. As described by Walczak (2001) it is a heuristic based on the belief
that if the sufficient amount of information that explain the output is not given to the
ANN, then the ANN cannot develop a correct model of the domain. The first step is
thus to perform a standard knowledge acquisition which typically involves consultation
with multiple domain experts, to guarantee that the set of inputs provide all relevant
domains to the ANN. Second, the set is pruned to eliminate noise to the ANN in order
to remove a possible risk of reducing generalization performance. This filtering is done
with a correlation and dependence investigation. The method suggests to study the
Pearson correlation matrix or alternatively making a chi-square test. The cutoff value
for elimination must be determined in advance, but the Walczak (2001) suggests any
correlation absolute value below 0.20 is probably a noise source to the ANN, and is
hence to be removed. (Walczak, 2001)

Obviously there is a trade off between choosing less or more inputs. Hence some
general properties of the inputs has been declared as desirable to identify the right
number. Huang et al. (2004) describe that the inputs ideally should be uncorrelated
with each other, but correlated with the output. This is based on the fact that inputs
that are correlated with each other contain overlapping information that, casually
speaking, will confuse the network. Dimension reduction is a method to achieve these
properties from a large set of inputs by decreasing the number of inputs and limiting
the reduction of the information provided to the network. Following this, two methods
for dimension reduction is described.

Autocorrelation Criterion is a method developed by Huang et al. (2004) based on
the investigation of correlation between inputs itself and to outputs. The model creates
different input information from the same data series, by using different lag periods. It
is useful to obtain a partial description of the time series since the coefficient describes
the degree of correlation between different data observations. The autocorrelation

30

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

coefficient can be described as

%k =

∑T
t=k+1(yt − ȳ)(yt−k − ȳt−k)/(T − k)∑T

t=1(yt − ȳ)2/T
(3.4.12)

where ȳ is the sample mean of y i.e.

ȳt−k =
1

T − k

T∑
t=k+1

yt. (3.4.13)

The model is based on the theory that the contribution of each input is dependent on
the other inputs. Each of them should be predictive but should not be correlated to the
other input variables since they provide the same information and thus would degrade
the ANN performance. The network will be confused by not knowing of which input
to use and may alternate back and forth. Hence, the method is based on following two
assumptions:

1. The inputs have as high degree of correlation to the output as possible

2. The inputs have as low degree of correlation to each other as possible

Therefore the algorithm to determine which lag periods, a(1), a(2), · · · , a(m), to use
is based on the following three steps:

• Step 1. Set upper limit of lag period N . Let a(1) = 1 and m = 1

• Step 2. a(m+ 1) = arg max
k

|rk|∑m
i=1|rk−a(i)|

• Step 3. Let m = m+ 1. If a(m) is less than N , go to Step 2. Otherwise, exit

This approach is useful for many practical problems, as it is easier to have data then
to determine theoretical guesses about the underlying laws governing the structure of
the data. Further, it avoids long experimentation in the input selection phase. (Huang
et al., 2004)

Principal Component Analysis (PCA) is a preprocessing method that can be
used to obtain k linearly uncorrelated variables stemming from n possibly linearly
correlated variables. The idea is to reduce the number of variables in a model,
but still keep as much information as possible from the original variables, while
at the same time having orthogonal variables. (Hull, 2012) By definition, the co-
variance matrix C to some input x is symmetrical, and can hence be rewritten as
C = QΛQ−1 = QΛQT =

∑n
i=1 λiqiq

T
i where Q is a matrix consisting of eigenvectors

qi of C and Λ is a diagonal matrix with the eigenvalues λi of C. (Blomvall, 2016)
The eigenvalues are computed by solving the characteristic polynomial of C which
is given by det(C − λI) = 0, where det(·) is the determinant and I is the identity
matrix. The corresponding eigenvector qi is computed by solving the characteristic
polynomial using the corresponding eigenvalue λi. (Janfalk, 2014) In PCA the eigen-
vectors and eigenvalues are sorted in descending order, i.e. λi ≥ λi+1, and as such
the first eigenvector has the highest degree of explanation of the eigenvectors in Q.

31

CHAPTER 3. THEORETICAL FRAMEWORK

The covariance matrix can now be estimated with the first k eigenvectors Qk with
corresponding eigenvalues Λk

Qk =

 | |
q1 . . . qk
| |

 Λk =

λ1 . . . 0
...
0 . . . λk

 (3.4.14)

by C ≈ QkΛkQT
k . Based on the orthogonality of the eigenvectors this will explain a

fraction of the variance according to

∑k
i=1 λi∑n
i=1 λi

. (3.4.15)

The principal components κit for eigenvector i for input xt at time step t can now be
computed as

κit = qTi xt, Cov(κi,κj) =

{
0 when i 6= j

λi when i = j
. (3.4.16)

(Blomvall, 2016)

Hidden layers

The layers, l ∈ (2, 3, . . . , L − 1), between the input and output layers of a multilayer
network is called hidden layer(s). Those consists of the hidden nodes where each layer
becomes a vector of hidden nodes. The term "hidden" refers to the fact that the layer
is not seen from either the input or the output layer. By adding the number of hidden
layers the network is enabled to extract higher order statistics from its polynomial
which provides the network with its ability to generalize. But this does not imply that
simply adding an extra layer will improve the network generalization ability. It is a vital
decision setting the size and scope of the network, a bigger network results in a more
complex training. Another consequence of too many hidden layers is the risk of getting
an overfitted model. (Kaastra and Boyd, 1996; Haykin, 2009) Thus, throughout the
history, the researchers have been stating the question: "What is the minimum number
of hidden layers in a multilayer network that provides an approximate realization of
any continuous mapping?"

The answer was stated by Hornik et al. (1989) who formulated the Universal Approx-
imation Theorem, (UAT), which basically says that any continuous function can be
approximated through a feedforward network with only one single hidden layer.

Theorem 3.4.1 (Universal Approximation Theorem) Let ϕ(·) be a non constant,
bounded, and monotone- increasing, continuous function. Let Im0 denote the m0-
dimensional unit hypercube [0, 1]m0. The space of continuous functions on Im0 is
denoted by C(Im0). Then, given any function f ∈ C(Im0) and ε > 0, there exists
an integer m1 and sets of real constants ai, bi and wi,j where i = 1, 2, . . . ,m1 and
j = 1, 2, . . . ,m0 such that we may define

32

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

F (x1, x2, · · · , xm0) =

m1∑
i=1

aiϕ

(m0∑
j=1

wijxj + bi

)
as an approximate realization of the function f(·); i.e.,

|F (x1, x2, · · · , xm0)− f(x1, x2, · · · , xm0)| < ε

∀ x1, x2, . . . , xm0 that lie in the input space.

Along with Cybenko (1989) he proved his theorem a few years later with a focus on
the dependency of the activation function and concluded that there are very general
conditions on the activation function to enable the theorem. Moreover it should be
non-constant, bounded, continuous and monotonic increasing Hornik (1991).

This behaviour of approximating a continuous function with a set of other continuous
functions is similar to the Fourier series approximation. Anyhow, the theorem proves
one layer is enough but does not express that it necessarily is the optimal choice in
sense of generalization capability (Haykin, 2009).

Since the UAT has been proven one could question why anyone would want to add an
extra layer and increase the risk of overfitting the data? Anyhow there are researchers
that argue for multiple number of hidden layers. Haykin (2009) state that there is a
problem with just one hidden layer since the neurons tend to interact with each other,
consequently he concluded the following statements

1. Local features are extracted in the first hidden layer. Specifically, some neurons
in the first hidden layer are used to partition the input space into regions, and
other neurons in that layer learn the local features characterizing those regions.

2. Global features are extracted in the second hidden layer. Specifically, a neuron
in the second hidden layer combines the outputs of neurons in the first hidden
layer operating on a particular region of the input space and thereby learns the
global features for that region and outputs zero elsewhere.

Chester (1990) advocate that for some problems a small, two hidden layer network
can be used since a single hidden layer network will require large number of nodes. He
claim that there is a trade off between adding extra nodes in the first hidden layer and
expanding to more hidden layers. He argues that doing the right trade off is important
when approximating functions with lot of "hills or valleys". Each additional unit in
a potential second layer enables the network to learn with a relative few number of
units in the first layer.

Unfortunately there is a limited discussion in the literature regarding methods to de-
termine the optimal number of hidden layers and the size of them, previous researches
often utilize "trial and error", which consequently shaped the standard procedure:
start with a network with one hidden layer. If the performance of the is not satis-
factory, then an extra hidden layer is added. But one should be careful when adding
more hidden layers, it is unusual since the training becomes more difficult. The reason
is that each layer perform a squashing operation because of the activation function
which causes the derivatives of the performance function with respect to their weights

33

CHAPTER 3. THEORETICAL FRAMEWORK

in the early layers to be quite small that consequently slows down the convergence of
steepest descent optimization. (Hagan et al., 2014)

Hidden neurons

As well as with the number of hidden layers, finding the optimal number of hidden
neurons is a prioritized area of research. One fact though, is that a function with
a large number of inflection points requires a large number of neurons in the hidden
layer(s) (Hagan et al., 2014). According to Zhang et al. (1998) it is the hidden nodes
in the hidden layer(s) that allows neural networks to detect the feature, capture the
pattern, and to perform complicated nonlinear mapping between input and output.
For instance, the number of hidden units in a layered feedforward network can play a
similar role to the number of terms in a polynomial (Bishop, 1995).

The trade off between choosing a larger network versus a smaller remains being a
unsolved issue in the literature. More hidden units results in a longer learning time
of the characteristics whilst smaller network may become trapped into a local error
minimum due to lack of generalization possibilities. The lack of generalization increases
required time to train but on the other hand there is an almost linear correlation
between the number of hidden units and the number of samples required for the
training process. Larger networks require more training examples than small networks
to achieve the same generalisation performance. Further, too large network open up
the risk for overfitting (Haykin, 2009; Bishop, 2006; Hagan et al., 2014; Kavzoglu,
1999).

Lots of rules of thumb have been proposed and most commonly discussed is that there
is a dependency of the size of input nodes, M1. Different proposals, from different
authors, claim that the number of hidden nodes used should be 2M1 + 1, 2M1, M1 or
M1

2
(Zhang et al., 1998). But one could argue that this is nonsense since the results

approximating different functions is inconsistent and according to Sarle (2002) these
methods are not involving any thoughts of number of training examples, amount of
noise in the target and the complexity of the function. Consequently, this leaves the
designer to try different heuristics based on trial and error. Two general approaches
are discussed: constructive techniques and pruning. The first suggests to start with
a smaller network and iteratively increase the number of hidden nodes in the layer(s)
until satisfactory learning is achieved. This might result in problems since the there
are problem that smaller network are more sensitive to weight initialization and other
parameters and thus the network might be trapped in local optimum. The other ap-
proach, pruning, is an opposite method where one starts with a larger network and
iteratively decreases the number of nodes after the training by studying the intercon-
nections to find out which nodes are redundant (Kavzoglu, 1999).

Even though a trial and error method is used there is of importance to decrease the
number of architectures tried to reduce training scope, hence setting limits of hidden
units tried is of interest. Bishop (2006) conclude that having a number of hidden
units smaller than the number of input units in the first hidden layer makes the
transformations that the network can generate not the most general possible because
information from the input is lost in the dimensionality reduction.

34

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

Unfortunately, UAT is not constructive with the number of hidden units as with the
hidden layer(s), it only says that the theorem holds for a unlimited size of one hidden
layer (Haykin, 2009). Determining an upper limit though, one could keep the Russian
mathematician Kolmogorov’s theorem from 1957 in mind. In neural network terms
this theorem says that any continuous function y(x) from a number, n, inputs of xi to
an output variable y can be represented exactly by a three-layer neural network having
by having, 2n, units in the first hidden layer and, n, units in the second hidden layer.
The theorem has been slightly modified throughout the years. The theorem has been
constructive proven and is formulated as

Theorem 3.4.2 (Kolmogorov’s theorem) Let f : 1n := [0, 1] 7→ R be an arbitrary
multivariate continuous function. Then it has the representation

f(x1, x2, . . . , xn) =
2n∑
q=0

Φq

(
n∑
p=1

ψq,p(xp)

)

with continuous one-dimensional outer and inner functions Φq and ψq,p. All these
functions Φq, ψq,p are defined on the real line. The inner function ψq,p are independent
of the function f .

(Braun and Griebel, 2009)

Output

The number of output nodes is relatively easy to determine since it is often stated with
the task and as with the input nodes set by the external specifications (Hagan et al.,
2014). Unravelling whether the problem encountered is a classification or regression
problem makes the choice of number of output nodes easier. The number of output
nodes in a classification problem is a direct consequence of the number of classes or
labels the selected input should be divided into. By using more than one output node
and create combinations of the binary values from each output one could extend the
classification network to classify into more than two classes. (Bishop, 2006; Ng, 2016)
There is no general method of determining the number of outputs of a regression
problem, it is given by the specific problem. Within prediction the time horizon has
a high influence since there basically are two ways of forecasting, one step ahead and
multiple step ahead. The latter way could be done in two ways, either by iteratively
letting the first step prediction become an extra input to the second step or by utilizing
multiple output nodes one for each time horizon. (Zhang et al., 1998) Another common
context where a multiple output might be useful is where the problem is complicated
and involves determining values of different domains, but these networks are according
to Kaastra and Boyd (1996) strictly avoided. The authors claim that widely spaced
outputs will cause inferior problems. Neural network training is based on minimizing
the average error of all outputs, for example the network could generate forecasts 1-
and 6-month ahead, the problem that arises is that the network will minimize the
biggest prediction error which most certainly will be the 6-month prediction. As a
result, a relatively large improvement will not be done on the 1-month prediction if
it increases the absolute error with a value that is greater. An undesirable property
attempting to predict with the best accuracy as possible.

35

CHAPTER 3. THEORETICAL FRAMEWORK

Obviously the size of the architecture is crucial but as in all modelling problems,
when designing the architecture one should always have in mind to not use a bigger
network when a smaller network will work. Also, the number of training examples
limits the size that should be used, as a bigger network add to the number of free
parameters (weights). Zhang et al. (1998) provide a rule of thumb that each weight
in the network should have at least 10 training examples, which consequently means
that the more inputs, layers and nodes that are used, the more training data should
be available. Hence, many researchers advocate to follow the principle attributed to
the English logician William of Ockham referred to as Ockham’s Razor. The principle
is formulated as

"Accept the simplest explanation that fits the data"

The fundamental idea is that increased complexity increases the possibility for errors.
(Haykin, 2009; Hagan et al., 2014)

3.4.4 Classes of network

Another vital part defining the paradigm of the neural network is determining its class.
There are basically no limitations in how one could design the neural network class
but Haykin (2009) emphasizes two fundamental classes that are most commonly used
by researchers: the feedforward and the recurrent network. These classes can bee seen
as basis that in some way are tweaked in the other less frequently used classes.

Dynamic and static networks

Before introducing the classes of networks we introduce two class categories. ANNs
can be classified into static or dynamic networks, where the static ones are calculated
directly from its input. In a dynamic network on the other hand the output depends
not only on the current inputs, x(t) but also on the previous input, x(t − 1). Hence
we introduce the unit delay operator in Figure 3.4.9

z−1
y(t) y(t− 1)

Figure 3.4.9: Delay block

The output of the block is the input delayed by one time step, assuming that time is
updated in discrete steps and takes only integers value. Using multiple delay operators
in one block enables the designer to build a dynamic network that utilizes input from
different time steps. Using a tapped delay line at the input basically means extending
the input vector with delayed values of the present input. Hence, a figure describing
the tapped delay line is introduced in Figure 3.4.10. (Hagan et al., 2014)

36

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

...

z−1

z−1

z−1

y(t) y(t)

y(t− 1)

y(t− 2)

y(t− n)

Figure 3.4.10: Tapped delay line

A dynamic network is said to have a "memory". Its response at any given time will
depend not only on the current input, also the history of the input sequence are taken
into account. Hence a dynamic network has applications in areas as control of dynamic
systems, prediction of protein structures in genetics and prediction in financial markets
(Hagan et al., 2014)

Feedforward

The first class to be introduced is the feedforward neural network (FFNN) that got its
name from the direction of the information flow i.e. the connections of the node does
not form a cycle. FFNN is the most successful class and the class that have been most
studied throughout the years, it is also the class refered to when the important UAT
and Kolmogorov’s theorem were defined. As categorization of FFNN the literature
often separates single-layer feedforward neural networks (SLFFNN) and multi-layer
feedforward neural networks (MLFFNN) where the name tells the difference, a multi-
layer feedforward network consists of at least one hidden layer.

Single-layer feedforward is the oldest and simplest neural network and the most
known are the McCulloch-Pitts-neuron, Perceptron and Aldaline network, which all
have in common that they consist of one single neuron. McCulloch (1943) developed
the first, which basically produced a logic output, y ∈ [0, 1], dependent on if the sum
of all weight corrected inputs become higher than a specific threshold, θ. The latter
two are basically smaller extensions where the Perceptron enables the weights to turn
negative, and create a bipolar output, y ∈ [−1, 1]; 6= 0 dependent on if the sum of all
weight corrected inputs become higher than θ, but the foremost development is that
the Perceptron enables a learning rule. Further, the Aldaline network was introduced
by the professor Bernard Widrow and his student Ted Hoff 1960 where they expanded
the features of the Perceptron by enabling a linear transfer function instead of a heavy
side function and also introduced the least mean square algorithm as learning rule
(Hagan et al., 2014). However, all these single layer networks lack functionality in
more complex problems.

Multi-Layer feedforward The key characteristic of the single-layer perceptron is
that it creates linear relationships. What if we have a non-linear pattern or categories

37

CHAPTER 3. THEORETICAL FRAMEWORK

that cannot be separated by linear boundaries? To deal with such characteristics, the
multi-layer feedforward network is introduced, and illustrated in Figure 3.4.11. (Hagan
et al., 2014)

...
...

...

· · ·
· · ·
. . .
· · ·

...
...

x0

x1

x2

x3

xM 1

h
(2)
0

h
(2)
1

h
(2)
M2

h
(3)
0

h
(3)
1

h
(3)
M3

h
(L−1)
0

h
(L−1)
1

h
(L−1)
ML−1

y1

yML

Input
layer

Hidden
layers

Output
layer

Figure 3.4.11: Example of a common neural network architecture, namely a feedfoward
network

The most successful model in the context of pattern recognition, function approxima-
tion and prediction is known as the Multi-Layer Perceptron, (MLP). In fact, "Multi-
Layer Perceptron" is a misnomer, because the model comprises of multiple layers of
models with continuous non-linearities rather than multiple Perceptrons with discon-
tinuous non-linearities. This means that the neural network function is differentiable
with respect to the network parameters, and this property will play a central role in
network training. The terminology in the literature is inconsistent and the authors
often refer to a general multilayer network when talking about a MLP or could also
name it as e.g. Kaastra and Boyd (1996) does, namely as the backpropagation (BP)
architecture. The name origins from its successful training methodology using gradient
descent applied to a sum-of-squares error function. A more comprehensive description
of BP will be in Section 3.6. (Bishop, 2006) The multilayer perceptron trained by BP
is currently most widely used (Bishop, 2006; Haykin, 2009; Hagan et al., 2014).

The standard neural network architecture for function approximation problems is the
MLP, with Tansig activation functions in the hidden layers, and linear activation
functions in the output layer. Further, a tweak of an MLP is useful in prediction
problem, mentioned as the focus time-delay neural network, i.e. an MLP with tapped

38

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

delay line at the input. (Hagan et al., 2014)

Recurrent network

Contrary to the FFNN the Recurrent Neural Network (RNN) is a model with bi-
directional data flow. An RNN is a network with feedback, i.e. the outputs of the
nodes of the network are sent back to be used as inputs. This feedback can be done
in different ways: by using self-feedback, i.e. the final outputs are used, or through
usage of some or all of the hidden nodes, for which then the network is mentioned as
a fully connected recurrent neural network (FCRNN), or also by using both FCRNN
and self-feedback, which is illustrated in the Figure 3.4.12.

Input
layer

Hidden
layer(s)

Output
layer

z−1 z−1

Figure 3.4.12: Example of a recurrent neural network with feedback from both hidden
and output layer(s)

One of the first FCRNN is the famous Hopfield network, invented by Hopfield (1982)
which later also were extended to the "noisy Hopfield network" by David H. Ackley
and Sejnowski (1985) and officially named as the Boltzmann machine. Both of them
are networks with associative memories that guarantees the network to find a local
minima and have been successful within physics. The prior one is though limited
by a storing capacity of association and the second suffer from having a painfully
slow training phase. (Haykin, 2009; Hagan et al., 2014) However, the computational
capability of FCRNN is summarized into a theorem stated by Siegelmann and Sontag
(1991).

Theorem 3.4.3 All Turing machines may be simulated by fully connected recurrent
networks built on neurons with sigmoidal activation functions.

A Turing machine, invented by Alan Turing 1936, with a basic description, is a machine
that is capable of computing any computable function, it could be seen as the opposite
to the neural networks in the domain of learning since it has infinite programs stored.
(Haykin, 2009; Fausett, 1994) General RNNs are used as associative memories, in
which stored data is recalled by association with input data, rather than by an specific
address (Hagan et al., 2014).

Nonlinear Autoregressive model with exogenous input (NARX) is one of the
most commonly mentioned RNNs. It is a dynamic recurrent network, that enclose sev-
eral static layers of the network. The NARX model is based on the linear ARX model,

39

CHAPTER 3. THEORETICAL FRAMEWORK

which is commonly used in time series modeling, but the NARX enables nonlinearity.
(Hagan et al., 2014) The NARX-model is primarily characterized by using

• Present and past values of the input vector, the exogenous input, x(t), i.e.(
x(t),x(t− 1), · · · ,x(t− τlag)

)
by utilizing a tapped delay line.

• Delayed values of the output vector, autoregression, y(t), i.e.
(
y(t),y(t−1), · · · ,y(t−

τfb)
)
by utilizing feedback.

Hence, the behavior of the NARX network is described by the function

y
(
t
)

= f
(
y(t− 1),y(t− 2), · · · ,y(t− τfb);x(t),x(t− 1), · · · ,x(t− τlag)

)
(3.4.17)

where, f , is a nonlinear function of its arguments (Haykin, 2009). Siegelmann et al.
(1997) provided a second theorem which reflect the computational power of a NARX
network with respect to other FCRNN.

Theorem 3.4.4 NARX networks with one layer of hidden neurons with bounded, one-
sided saturated activation functions and a linear output neuron can simulate fully con-
nected recurrent networks with bounded, one-sided saturated activation functions, ex-
cept for a linear slowdown.

The opinion of the recurrent networks are inconsistent between the researchers, and
its obvious that it suits some problems better than others. According to Hagan et al.
(2014) a NARX network is well suited to function approximation and prediction prob-
lem whereas Kaastra and Boyd (1996) claim that a recurrent network is less common
in time series forecasting.

Hagan et al. (2014) express that general RNNs are potentially more powerful than
feedforward networks, since they are able to recognize and recall temporal, as well
as spatial, patterns. If a network does not have any feedback connections, then only
a finite amount of history will affect the response. But there are downsides too.
A recurrent network involves more complexity because, in contrast to FFNN, the
output is a function not only of the input but also a function of time which involves
a functional instability. This means that the response of the network may converge
to a stable output, but could as well oscillate, follow a chaotic pattern or explode to
infinity. Further, the training part of a recurrent network is said to be more difficult.
One could visualize an RNN as an FFNN unfolded in time, if 5 time steps of feedback
is used this could be seen as FFNN with 5 layers, one for each step. Suppose a sigmoid
activation function is used, then if the output is near the saturation point of any time
point, the resulting gradient will be quite small, which impair the training algorithm.
(Hagan et al., 2014)

Ensemble averaging

According to Haykin (1999) the method of ensemble averaging is a type of static struc-
ture committee machine. A committee machine is a model that combine a number of
neural network outputs, to derive the final output. The idea is that the combination of
several neural networks supposedly derive at a superior solution to a solution derived

40

3.4. ARTIFICIAL NEURAL NETWORKS PARADIGM

by any of the individual networks. The category of ensemble averaging linearly com-
bines the outputs of the individual neural networks, in contrast to dynamic structures
(see Haykin (1999)) that combines the individual networks non-linearly. Figure 3.4.13
illustrates a general ensemble averaging model.

Input

...

Network 1

Network 2

Network N

Combiner
N∑
i=1

αiyi(x)

x

y1

y2

yN

y

Figure 3.4.13: A general model for ensemble averaging, where x is the input, yi is the
output from network i, and αi ≥ 0 is a weight for the output from network i

Consider a sample of neural network as regression estimators yi that estimate the
desired output with a mean squared error on the validation set MSE[yi]. Perrone
(1993) describe that it is unsatisfactory to choose the commonly naive estimator of
the problem, i.e. to choose the neural network that estimates the output with yi that
satisfies

yNAIV E(x) = arg min
yi

MSE[yi]. (3.4.18)

This is based on two major reasons. The first reason is that the rejection of estimators
yi potentially discards useful information stored in the discarded estimators. The
second reason is that since the validation set is random, there is a certain probability
that another neural network than the naive estimator will perform better on a different
sample of the validation set based on the same distribution. As such, Perrone (1993)
define basic ensemble model (BEM) of N estimators as

yBEM(x) =
1

N

K∑
i=1

yi(x) (3.4.19)

which under the assumption of mutually independent regression errors will reduce the
mean squared error to MSE = 1

K

∑K
i=1MSE[yi]. This means that the ensemble aver-

age will keep the bias (training error) but reduce the variance (generalization error) of
the individual networks. Haykin (1999) conclude that in ensemble averaging, the net-
works should be purposely overtrained since the averaging will reduce the variance of
the final network, but keep the bias of the individual networks. As such, combining en-
semble averaging and regularization and/or early stopping is by Haykin (1999) adviced
against. Also, Naftaly et al. (1997) advice against varying all the hyper-parameters

41

CHAPTER 3. THEORETICAL FRAMEWORK

(architecture, training set etc.) of the ensemble averaging networks, and instead argue
to only vary the weight initialization to reach best performance.

3.5 Data preprocessing

Preprocessing the input and output data of a neural network to end up with an ade-
quate data representation is crucial in order to design a successful network. The aim
is to remove noise, highlight relationships, flatten the distribution and detect trends
to help the neural network detect relevant patterns. (Kaastra and Boyd, 1996) This
coincide with the motivation of determining the right inputs, hence the choice of inputs
and preprocessing technique walks hand in hand. For example, the PCA technique
is a preprocessing technique described in Section 3.4.3. While the PCA transforms
the data (preprocessing), it will lower the dimensionality, i.e. the number of inputs
and subsequently the eigienvectors will be the inputs. According to Han et al. (2012)
there are several data preprocessing techniques, ranging from data cleaning (removal
of noise and inconsistencies), data integration (merging data from different sources),
data reduction (aggregating or eliminating redundant data) to data transformation
(e.g. scaled into a certain range). The techniques are not mutually exclusive and may
work well together in preprocessing purposes.

A common technique in data transformation is to normalize the data. Normalization of
the data will remove the dependence of measurement unit and will transform different
data types into a common range, often [−1, 1] or [0, 1]. (Han et al., 2012) A general
model for normalizing a data point x to x′, where the minimum value of x is minx
and the maximum value of x is maxx, into a range [newMinx, newMaxx] is

x′ =
x−minx

maxx −minx
(newMaxx − newMinx) + newMinx (3.5.1)

which for the case of normalized data into [0, 1] simplifies to

x′ =
x−minx

maxx −minx
. (3.5.2)

If the min-max normalization is dominated by outliers, i.e. the majority of data points
are transformed to a small portion of the min-max interval a zero-mean normalization
might come handy of computational efficiency reasons described in Section 3.4.2 and
especially in Section 3.4.2 (Han et al., 2012). The zero-mean normalization is defined
by

x′ =
x− x̄
σx

(3.5.3)

where x̄ is the arithmetic mean of the sample and σx is the sample standard deviation.
To further reduce the effect of outliers, zero-mean normalization might be used with
mean absolute deviation instead, such that

42

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

x′ =
x− x̄
sx

(3.5.4)

and
sx =

1

n
(|x1 − x̄|+ |x2 − x̄|+ . . .+ |xn − x̄|). (3.5.5)

(Han et al., 2012)

By preprocessing the data into a proper data representation, Kaastra and Boyd (1996)
claim that the performance of neural networks may be enhanced as it can specialize
in its proper objective. A useful tool in preprocessing is histograms, which can re-
veal if the variables are scaled appropriately (Kaastra and Boyd, 1996). In addition
to improving the quality of the pattern recognition, the data preprocessing might re-
duce time required for computation as the gradients in the backpropagation algorithm
becomes better suited for the problem (Han et al., 2012).

3.6 Optimization of neural network parameters

The optimization of the neural network parameters consists of two major parts. The
first part is the optimization of the neural network weights given a specific set of hyper-
parameters (or paradigm). This part is called neural network training. Training of
a neural network is hence the process of calculating the set of weights, W∗, that
minimizes the error function of the network for a given set of training examples. This
corresponds to the calculation of the coefficients in a linear regression model described
in Section 3.2.2. Training examples are samples of inputs and outputs that the neural
network will use to recognize patterns, and therefore generalize. The second part is the
optimization of the hyper-parameters, i.e. determining which neural network paradigm
that gives the best generalization ability.

This section will introduce methods for training the individual neural networks, but
also methods for optimizing the hyper-parameters.

3.6.1 Purpose of network training

The training of a neural network refers to the optimization of the weights to minimize
the error function of the network. However, one is usually interested in optimizing the
generalization ability of the network (Prechelt, 1998), which might not coincide with
the minimum of the error function due to different in sample and out of sample data.
Most researchers’ purpose when training the network is to achieve a high generalization
ability (see e.g. Prechelt (1998); Bishop (2006); Haykin (2009)). Therefore, it may
not be of interest to find the global optimum of the error function, which is further
discussed in Section 3.6.7.

3.6.2 Training, validation and testing data sets

The available data set of the past observations of the relationship between input and
output is usually partitioned into different subsets, namely training, validation and
training sets. The mentioned training examples, that is used to optimize the portfolio

43

CHAPTER 3. THEORETICAL FRAMEWORK

weights, is found in the training data set. The validation data set consists of data that
different paradigms of networks can be validated on, so that the best configuration can
be chosen. The testing set has the purpose of being a truly untouched out-of-sample
data set so that the final model can be evaluated on data corresponding to future data.
Usually the training set is the largest of the sets. The partitioning of the data can be
done in different ways. One example is to chronologically divide the data set into the
three subsets. For estimating expected value in finance, some researchers propose that
the data should be randomly partitioned into the different subsets, with the purpose
of validating models and testing the final model regardless of market trend. Kaastra
and Boyd (1996) provide an example, where they suppose that the testing set consists
of data where the market is bullish. A model that has low generalization error on this
test set might be considered a good model, but might actually just be performing good
on a market uptrend, and not during general market conditions, hence having a bad
generalization ability.

3.6.3 Testing

Once the final model is decided upon, the generalization ability is tested on a previously
defined but untouched testing set. Many researchers, e.g. Kaastra and Boyd (1996);
Zhang et al. (1998), stress the importance of by no means using this untouched testing
set while selecting model to have a final independent check and evaluation of the
neural network generalization performance before finally using it. If the entire data
set in drawn from the same population, the researcher might just commit a portion of
the data to be a testing set. However, if the drawn data comes from a non-stationary
times series the conclusions drawn from the testing might differ greatly with the actual
generalization performance. Instead, to simulate a situation where the neural network
is retrained occasionally, a walk-forward testing routine might be utilized instead.
(Kaastra and Boyd, 1996; Hu et al., 1999)

Walk-forward testing routine

Kaastra and Boyd (1996) describe a walk-forward testing routine being popular in
commodity trading systems see Figure 3.6.1. The data is divided into subsets of
overlapping training, validation and testing sets. The size of the testing set will control
the frequency that the network can be retrained at. In each of the training, validation
and testing sets the network weights will be stationary, but looking at the entire
times series, the network weights will be able to model a non-stationary functional
relationship. However, by conducting this technique the assumption is made that
the researcher will retrain the network at some frequency going forward, in order for
the error on the testing period to be a fair estimate of the generalization ability of
the model. The size of the testing set will determine how often the network can be
retrained.

44

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

Figure 3.6.1: A moving window walk-
foward testing routine

Figure 3.6.2: An expanding window
walk-foward testing routine

Hu et al. (1999) describe an additional moving forward testing scheme, that rather
than moving the window forward, expands it, see Figure 3.6.2.

3.6.4 Error functions

In order to evaluate the performance of the network in the training, validation and
testing set respectively, an error function, J(·), has to be defined for the data sets.
We will refer to training set error (self-explanatory), generalization error (error in the
validation set) and test set error (self-explanatory). Three common metrics are the
mean absolute error (MAE), the mean squared error (MSE) and the mean of the fourth
power error (MFPE) defined as

JMAE =
1

N

N∑
m=1

|ŷm − ym|, JMSE =
1

N

N∑
m=1

(ŷm − ym)2, JMFPE =
1

N

N∑
m=1

(ŷm − ym)4

(3.6.1)

where ŷm is the output, ym is the desired output for training example m = 1, 2, . . . , N
(Bishop, 2006; Haykin, 2009; Gangal et al., 2007). As the exponent gets higher, the
more the bigger errors will influence the model, and according to Gangal et al. (2007) is
the usage of the fourth power error function rather focusing on minimizing the largest
errors than minimizing the average error. When small errors are equally important as
large errors, the mean absolute error might be preferred. The standard error function
is the mean squared error, which is suitable for a large number of problems (Bishop,
2006; Haykin, 2009).

Several alterations of the provided error functions are provided in the literature. One
example is the cross-entropy error function. Nielsen (2015) conclude that the error
function JMSE suffers from learning slowdown for certain evaluation points, and pro-
poses the use of a cross-entropy error function which has a better learning rate than
the mean of squared errors, and is defined as

J = − 1

N

N∑
m=1

[
ym ln(ŷm) + (1− ym) ln(1− ŷm)

]
, ŷm, ym ∈]0, 1[. (3.6.2)

When using the backpropagation algorithm, the error function has to satisfy two prop-
erties. The first property is that it must be possible to write the error function as an
average of cost functions for individual training examples. The second property is that

45

CHAPTER 3. THEORETICAL FRAMEWORK

the error function must be a function of the outputs of the neural network. (Nielsen,
2015) The choice of error function will impact the expected value estimation of the
output, as well as the computational efficiency of the training.

A common alteration of the MSE is the root mean squared error (RMSE) which is
defined by Hu et al. (1999) as

RMSE =

√√√√ 1

T

T∑
i1

(yt − ŷt)2, RMSE = Root Mean Square Error. (3.6.3)

Some error functions are proposed for evaluating neural network models, that does not
have the same relevance for optimizing network weights, or hyper-parameters. They
make the errors relative, and hence make it possible to compare between different
contexts. Some of them are provided by Maasoumi and Racine (2002); Hu et al.
(1999) as

MAPE =
1

N

N∑
m=1

∣∣∣∣ym − ŷmym

∣∣∣∣, MAPE = Mean Absolute Percentage Error (3.6.4)

MdAPE = Median

(∣∣∣∣ym − ŷmym

∣∣∣∣·100

)
, MdAPE = Median Absolute Percentage Error

(3.6.5)

SIGN =
1

N

N∑
i=1

zm, where zm =

{
1 if ymŷm > 0

0 otherwise
. (3.6.6)

3.6.5 Problem structure

The network training tries to find the set of weights W∗ that minimizes the error
function. The point where the error function is minimized will have the property of
∇J(W) = 0. Points that satisfy this condition is called stationary points, and can be
categorised as minima, maxima and saddle points. For a convex optimization problem
no saddle points exits and there will be only one stationary point, either a minima or
a maxima. Consequently, for the minima problem, the local minima will coincide with
the global minimum of the problem. (Bishop, 2006)

For neural network problems there is typically a non-linear relationship between the
error function and the weights, as is the case for the sum of squares differences error
function described earlier. This means that one iteration of the backpropagation model
will reach a local minimum, and that we will not be able to determine whether this is
the global minimum or not. Generally, comparison of several local minimas is required
to reach a sufficiently good solution of a non-convex optimization problem. (Bishop,
2006)

46

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

Solving a non-convex optimization problem

For non-convex optimization problems, there exists techniques to systematically find
different local minimas in a try to find a solution that is "good enough". One of them
is to run the optimization heuristic multiple times, with different initial conditions.
By doing so, the objective function value for different local minimas can be compared,
and consequently better solutions can be identified than if only one iteration of the
optimization heuristic was run. (Lundgren et al., 2008) Bishop (2006) claim that this
might also be necessary in neural network training. As such, a model for choosing
initial solutions has to be defined, as well as a stopping criterion for when to stop the
iterations. The model for picking initial conditions depend on the problem structure,
and the stopping criterion may depend on the problem structure as well or other
constraints as available time, fault tolerance etc.

3.6.6 Optimization of neural network weights

When optimizing, training, the networks weights, the class of the network will deter-
mine what training algorithm that can be used. When conducting training of mul-
tilayer perceptrons, i.e. a MLFFNN, the gradient descent, using backpropagation
algorithm for determining the error function derivatives with respect to each weight,
is popular, partly because of its simplicity but also because of its computational effi-
ciency (Haykin, 2009; Bishop, 2006). In the literature, there is a slight confusion of
terminology. Some researchers refer to the complete training algorithm as backpropa-
gation training, whereas some researchers refer, correctly, to the process of calculating
the derivatives of the error function with respect to each weight. (Bishop, 2006) Haykin
(2009) explains that a neural network training algorithm consists of two major phases,
the forward phase and the backward phase:

1. The forward phase refers to the forward propagation of the input signal x to the
network, that after being processed by the neurodynamics, eventually produce
an output signal y given a set of fixed weights W.

2. The backward phase adjusts the weights in the network with the purpose of
decreasing the error J(W) between the generated output signal ŷ and the desired
output y

The two phases are alternated with the purpose of incrementally decreasing the pro-
duced total error of the network. Hence, the algorithm will at step n + 1 update the
weights Wn+1 to improve the network and produce a smaller error J(·) than what was
produced with Wn such that

J(Wn+1) < J(Wn). (3.6.7)

The total error function J(W) for a set of weights W is calculated as a sum of the
errors for each training example Jm(W), m = 1, 2, . . . , Nt, defined as

J(W) =
N∑
m=1

Jm(W). (3.6.8)

47

CHAPTER 3. THEORETICAL FRAMEWORK

In the area of backpropagation, gradient descent is a widely used optimization heuristic
to perform the update of weights between the step n and n + 1 and eventually find
the W∗(Bishop, 2006). The general updating schema of an optimization algorithm is
Wn+1 = Wn + ∆Wn, however in the case with gradient descent, with a minimizing
objective function, the updating schema for each weight for a signal from neuron i to
a neuron j in layer l is

w
(l)
ij (n+ 1) = w

(l)
ij (n)− η(l)

ij

∂J(Wn)

∂w
(l)
ij (n)

(3.6.9)

where the parameter η(l)
ij > 0 is called the learning rate parameter. The corresponding

vectorized updating schema is defined as

Wn+1 = Wn − η �∇J(Wn) (3.6.10)

where � is the Hadamard product, i.e. elementwise multiplication. In general, two
optimization methods exist for training a neural network. The first is called the batch
optimization method, and the second is called the on-line optimization method. The
gradient descent in (3.6.10) requires processing of the entire training set for every
evaluation of ∇J(Wn), a technique called batch optimization method. Bishop (2006)
describes that the simple batch gradient descent is a poor algorithm for batch opti-
mization problems, and that methods as conjugate gradient methods and quasi-Newton
methods (see e.g. Lundgren et al. (2008); Haykin (2009)) are more appropriate. How-
ever, remembering (3.6.8), i.e. that the error function J(W) is a sum of errors for each
data point Jm(W), we can instead update the weights based on single data points it-
eratively as

Wn+1 = Wn − η �∇Jm(Wn) (3.6.11)

which is a technique called on-line gradient descent (also called stochastic gradient
descent and sequential gradient descent). This technique has proven to be useful for
network training on large data sets. On-line methods are more efficient in handling
data redundancies, and are also prone to avoiding stationary points of the optimization
problem since stationary points for the individual data points might not coincide with
stationary points for the whole training example set. (Bishop, 2006) One can also use
an intermediate model, where a number of individual data points are batched together
rather than all data points as in the batch method.

For sufficiently small η the error function will for every update of the weights decrease.
If the learning parameter is set too high, the algorithm face the risk of not converging
to a local optimum as it will step past the local optimum. If the learning parameter is
set to a too small value, the algorithm will be very slow. (Tsai and Hsiao, 2003) claim
that the learning parameter in general can be set to 0.9. Haykin (2009) claims that
all neurons ideally should learn at the same rate, and hence the learning rate parame-
ter should be determined accordingly. Considerable properties when determining the
learning rate parameter is that the last layers have larger local gradient than the first

48

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

layers, and similarly neurons with more inputs have larger local gradient, and should
consequently be assigned a smaller learning rate parameter. In LeCun et al. (1998) it
is proposed that the learning rate parameter for a signal from neuron i in layer l to a
neuron j in layer l + 1 should be inversely proportional to the square root of inputs
Ml to the neuron j, i.e.

η
(l)
ij =

1√
Ml

. (3.6.12)

Adaptive learning rate parameters can be utilized, i.e. the learning rate parameters
are adjusted during the course of the optimization. The adaptive learning rate is
used to deal with the changes of magnitude of the gradient during the course of the
optimization, as well as the need for fine-tuning the learning rate when the optimization
algorithm is close to a local minimum. (LeCun et al., 1998)

The backpropagation technique plays a vital role for computing the ∇J(W). The
derivative can not simply be calculated using an analytical expression, since the error
function not is defined for intermediate neurons, only for the output layer. Bishop
(2006) describes the backpropagation technique for an on-line method implementation,
hence describing how the ∇Jm(W) is computed. Remembering that

a
(l)
j =

Ml∑
i=1

w
(l)
ij z

(l)
i (3.6.13)

and

z
(l+1)
j = ϕ(a

(l)
j) (3.6.14)

we note that Jm depends on w(l)
ij via the summed input a(l)

j to node j in the next layer.
We can according to Persson and Böiers (2005) via the partial derivative chain rule
write

∂Jm

∂w
(l)
ij

=
∂Jm

∂a
(l)
j

∂a
(l)
j

∂w
(l)
ij

. (3.6.15)

From (3.6.13) we have that ∂a
(l)
j

∂w
(l)
ij

= z
(l)
i . Let us also denote ∂Jm

∂a
(l)
j

= δ
(l)
j as the error

term. We now together with (3.6.16) have

∂Jm

∂w
(l)
ij

= δ
(l)
j z

(l)
i . (3.6.16)

As such, we need to calculate δ(l)
j for every neuron j in the output layer and the hidden

layers to receive the total derivative. For the input layer, the error term is not defined,
and will as such not be calculated.

49

CHAPTER 3. THEORETICAL FRAMEWORK

The backpropagation algorithm will depend on the choice of neural network class,
error function and choice of activation functions in both the hidden layers, but also
the output layer. To exemplify how the backpropagation algorithm works in practice,
we will consider a MLFFNN with a common choice of activation function in the output
layer, i.e. the identity function ϕo(a) = a. The error function will be the sum of ML

squared errors defined as

Jm =
1

2

ML∑
j=1

(ŷmj − ymj)2 (3.6.17)

where ŷmj and ymj is the output of the neural network and the desired output re-
spectively for output node j ∈ {1, 2, . . . ,ML} of training example m ∈ {1, 2, . . . , N}.
These choices give the derivative of the error function with respect to the weights
w

(L−1)
ij to the output layer

∂Jm

∂w
(L−1)
ij

= (ŷmj − ymj)z(L−1)
i . (3.6.18)

Hence, by comparing (3.6.16) and (3.6.18) the error term δ
(L−1)
j for the node j in the

output layer L is the difference between the output signal ŷ and the desired response
y

δ
(L−1)
j = ŷj − yj. (3.6.19)

For the Ml neurons in the hidden layers before layer L there is no specific desired
output, the error term rather has to be determined recursively backwards. Note that
layer l can be any layer, either the output layer, or a hidden layer. Again, utilizing
the partial derivative chain rule we get

δ
(l)
i =

∂Jm

∂a
(l)
i

=

Ml+1∑
j=1

∂Jm

∂a
(l+1)
j

∂a
(l+1)
j

∂a
(l)
i

. (3.6.20)

We previously defined ∂Jm

∂a
(l+1)
j

= δ
(l+1)
j . We also know from (3.6.13) and (3.6.14) that

a
(l+1)
j =

∑
iw

(l+1)
ij ϕ(a

(l)
i), and conclusively we now end up with the backpropagation

formula

δ
(l)
i = ϕ′(a

(l)
i)

Ml+1∑
j=1

w
(l+1)
ij δ

(l+1)
j . (3.6.21)

As we have defined δ(L−1)
j for the output layer, we can backpropagate the errors in the

network with arbitrary number of layers. Bishop (2006) summarizes the backpropaga-
tion algorithm with the four steps i-iv below, and completed with a loop and a weight

50

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

update schema we receive the network weight optimization algorithm for the on-line
training methodology.

1. While |∇J(Wn)| > threshold

I For every training example m = 1, 2, . . . , N repeat

i. Forward propagate a training example xm to find all neurons’ activa-
tions

ii. Calculate δ(L−1)
j for the output neurons

iii. Backpropagate δ(L−1)
j using the backpropagation formula to obtain δ(l)

j

for every neuron j in every hidden layer l

iv. Calculate the derivatives using (3.6.16)

v. Update the weights according to the optimization heuristic of choice

The procedure of one outer loop, i.e. I above, is usually called an epoch. An epoch
is thus referring to forward and backward propagation of all the training examples.
Usually several epochs are needed for the algorithm to converge to a stationary point.

Variants of the standard gradient descent optimization

One common modification of the gradient descent backpropagation training algorithm
is the introduction of a momentum term. Kaastra and Boyd (1996) describe the
addition of the momentum term to the gradient descent by changing the updating
schema ∆Wn to

∆Wn = −η �∇J(Wn) + α∆Wn−1 (3.6.22)

where α is the momentum term that assigns a weight to the previous weight update
term Wn−1. LeCun et al. (1998) describe a couple of classical second order opti-
mization algorithms that utilize information in the hessian of the objective function:
the Newton method, Conjugate Gradient method, Quasi-Newton (BFGS) method,
Gauss-Newton and Levenberg Marquardt. These classical second order methods are
according to LeCun et al. (1998) impractical in almost all useful cases, as methods
using full hessian information only can be applied to very small networks trained in
batch mode, and these networks are not in need of being improved as they are quickly
computed. The authors further claim that a carefully tuned on-line gradient descent
algorithm is hard to beat on large classification problems. For smaller functional ap-
proximation problems, the conjugate gradient is considered by LeCun et al. (1998)
to be the best combination of speed, reliability and simplicity. As a consequence of
these arguments, we will not describe any of the second order algorithms, nor how to
backpropagate the hessian.

Weights initialization

In order to be able to run a search optimization heuristic, the initial set of weights
has to be determined. (Lundgren et al., 2008) According to Ng (2016), it is important

51

CHAPTER 3. THEORETICAL FRAMEWORK

to break the symmetry of the initial solution in the area of the backpropagation al-
gorithm, meaning that the weights should be initialized to distinguished values. The
implication of initializing the weights to the same number is that all the neurons (in
a layer) will be calculating the same function of the input data, creating vast redun-
dancies in the network. Also, given such an initialization the network will not be a
universal approximator of functions. Ng (2016) rather suggest that each weight should
be randomly initialized such that each element in W ∈ [−ε, ε]. Haykin (2009) points
at the fact that the choice of ε can impact the performance of the backpropagation
algorithm since the initialization weights will greatly impact the training efficiency of
the network. Too large weights will saturate the activation function, and to small
weights will result in small gradients, slowing the learning down LeCun et al. (1998).
There are numerous strategies for randomizing the initialization weights, Glorot and
Bengio (2010) claim that a common strategy is to initialize the biases to 0 and the
weights w(l)

ij from neuron i at layer l to neuron j at layer l + 1 with Ml inputs to

w
(l)
ij ∼ U

[−1√
Ml

,
1√
Ml

]
. (3.6.23)

Even though Bengio (2012) claim that the weight initialization for a neural network
only has slight effect on the result, he propose different methods for increasing per-
formance (finding better solutions). If computational power is at hand, he propose to
run the optimization multiple times, 5 to 10 times, for a small set of parameter values.
Another technique is model averaging (Section 3.4.4), such as Bagging (as explained
by Breiman (1996)) and Bayesian methods. Briefly, model averaging is the process
of averaging the outputs of multiple trained networks, where the different solutions
depend on e.g. weight initialization, use of different input variables, use of different
architectures, or use of different training examples (namely Bagging).

Another popular model for initializing the weights is the Nguyen and Widrow (1990)
model. The general idea is to pick weights so that the active regions of the neurons
in the hidden layers will be distributed approximately evenly over the input space
to the neurons. Each hidden node will initially be assigned its own interval of the
input space. If the transfer function outputs the interval [−1, 1] and the inputs are
preprocessed to [−1, 1] the interval that has to be covered has the length 2. Nguyen
and Widrow (1990) explain the methodology by considering a 2-layer neural network
with one input x and H hidden neurons, where each hidden neuron is responsible for
an interval of length 2/H. The weight from the input to each hidden neuron is wi
and the bias weight is wbi . Consider a sigmoid transfer function that is approximately
linear on

−1 < wix+ wbi < 1 ⇒ −1/wi − wbi < x < 1/wi − wbi (3.6.24)

has the length 2/wi. This means that 2/wi = 2/H and wi = H. Nguyen and Widrow
(1990) use wi = 0.7H to get somewhat overlapping intervals. The bias weight wbi is
picked so that the center of an interval is located at

x = −wbi/wi ∼ U [−1, 1] ⇒ wbi ∼ U [−|wi|, |wi|]. (3.6.25)
52

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

3.6.7 Generalization error

When training a neural network, it learns patterns of input-output combinations given
by the training examples. The goal is to find a network that is able to generalize well,
i.e. to be able to accurately predict an output even if the future input data is slightly
different than the trained examples. However, a network that is provided with many
training examples, or a network that model a very high order polynomial (many hidden
layers and/or many hidden neurons), might risk having a low generalization ability,
even if the functional fit to the training data is good. Figure 3.6.4 shows an example
of poor generalization ability, as the output is not able to predict out-of-sample data,
described by the true functional relationship in Figure 3.6.3, which generally never is
known. This problem is known as overfitting or overtraining. (Haykin, 2009)

Input

O
u
tp

u
t

Training examples

True functional relationship

Out-of-sample data

Figure 3.6.3: True functional relation-
ship between input and output

Input

O
u
tp

u
t

Training examples

Output learnt through training

Out-of-sample data

Figure 3.6.4: Trained network with
poor generalization ability

Similarly, a network can underfit the data, which means that the model is too simple in
regards to the data that it is trying to model, e.g. a linear model where the underlying
relationship of the data is exponential. (Ng, 2016)

The conclusion from this example is that the training error is not a good metric for
the generalization ability of a neural network, something that is supported by most
researchers, e.g. Bishop (2006); Haykin (2009). Consequently, we need to formulate
techniques in order to overcome this problem.

Prechelt (1998) state that overfitting can be avoided either by reducing the number
of dimensions in the parameter space or by reducing the size of each dimension. The
former can be done via greedy constructive learning, pruning, weights sharing, or
as proposed by Ng (2016) a model selection algorithm. The latter can be done with
regularization or early stopping. The two main options to resolve the issue of overfitting
for a neural network is according to Ng (2016) the use of a model selection algorithm
and/or regularization.

Regularization

The regularization approach refers to the introduction of a regularization term in the
error function. According to Bishop (2006), the simplest regularizer is the sum of all

53

CHAPTER 3. THEORETICAL FRAMEWORK

quadratic weights which incorporated to the error function gives the regularized error
function

J̃(w) = J(w) +
φ

2
wTw (3.6.26)

where φ ≥ 0 is the regularization coefficient. This regularization is in machine learning
known as weight decay. The factor φ will control the level of over- or underfitting, and
typically, a higher value of φ will decrease the magnitude of the weights. There are of
course an infinite number of regularized error functions J̃(w), and a general form is
described by

J̃(w) = JD(w) + φJW (w) (3.6.27)

where φ controls the importance of the error deriving from the regularization term
JW (w) and the data dependent error JD(w). (Bishop, 2006)

Early stopping

Another method for decreasing the risk of overfitting is the technique of early stopping.
The technique is described by Prechelt (1998) and is based on the idea that as the
training error decreases with the number of epochs, the generalization error will at
some point increase as overfitting is starting to occur, see Figure 3.6.5. In theory,
once the generalization error has increased for one epoch, the weights for the previous
epoch should be used. In practice, the generalization error is usually approximated
with the error of the validation set. Also in practice, the validation error usually
contains several local minimas which implies that the process becomes a trade-off
between finding a low generalization error and computation time, see Figure 3.6.6.
As such, more sophisticated stopping criteria that result in a good "time-performance
ratio" have to be defined, other than a criterion that stops when the generalization
error has increased.

Prechelt (1998) proposes three classes of stopping criteria. Let us denote Jtraining(t)
as the average training set error, Jvalidation(t) as the average validation set error, and
Jtest(t) as the average test set error measured after epoch t. Now let us define

Joptimal(t) = min
t′≤t

Jvalidation(t′). (3.6.28)

The generalization loss GL at epoch t is defined as the percental increase in general-
ization error at epoch t with regards to the best generalization error

GL(t) = 100

(
Jvalidation(t)

Joptimal(t)
− 1

)
. (3.6.29)

There might though be instances where the generalization error increases a lot during a
part where the training error still decreases rapidly. In such a setting, Prechelt (1998)
remark that the generalization error might decrease rapidly again, based on the idea

54

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

Figure 3.6.5: Theory of training vs.
validation error for a neural network

Figure 3.6.6: Common training vs. val-
idation error characteristics

that overfitting starts to occur first when the training error decreases slowly. Prechelt
(1998) therefore define a metric that measure how much the average training error
during a training strip of length k was larger than the smallest training error during
the same training strip. A training strip is a sequence of epochs n, n + 1, . . . , n + k.
Let us now define

Pk(t) = 1000

(∑t
t′=t−k+1 Jtraining(t

′)

k · min
t−k+1≤t′≤t

Jtraining(t′)
− 1

)
. (3.6.30)

With these definitions, we can now define the three classes of stopping criteria defined
by Prechelt (1998), which are presented in Table 3.6.1.

Table 3.6.1: Three stopping criterias defined by Prechelt (1998)

Class Symbol Criteria

1 GLα Stop after first epoch t with GL(t) > α

2 PQα Stop after first end-of-strip epoch t with GL(t)
Pk(t)

> α

3 UPs Stop after epoch t iff UPs−1 Stops after epoch t−k and Jvalidation(t) > Jvalidation(t−k)
UP1 Stop after first end-of-strip epoch t with Jvalidation(t) > Jvalidation(t− k)

The third class of stopping criteria in Table 3.6.1 stops when the generalization error
has increased for s consecutive steps. This criterion measures the sign of the difference
in generalization error between epochs rather than the size of the difference, and can
therefore learn to recognize a pattern of consistency of generalization error increases.

As none of these stopping criteria might be terminated alone, Prechelt (1998) propose
to use complementing stopping criteria, e.g. when progress of validation error drops
below 0.1 or after a maximum of 3000 epochs.

55

CHAPTER 3. THEORETICAL FRAMEWORK

By conducting tests with 14 different stopping criteria on 12 different learning tasks
with 12 different network architectures, resulting in 1296 runs per learning algorithm,
Prechelt (1998) came to three fundamental conclusions listed as

1. Unless small improvements of network performance is needed (e.g. 4 %) use fast
stopping criteria (parameters α, s), or else time is increased severely (∼4 for 4
% performance increase)

2. If high probability of finding a "good solution" is preferred, use GL criterion

3. If high average quality of solutions is preferred, use PQ criterion if network
overfits only little, else use UP criterion

Whether or not these rules generalize to other learning tasks than those used in the
paper is not validated though. (Prechelt, 1998)

3.6.8 Hyper-parameter optimization

As there are numerous hyper-parameters to decide upon when designing a neural net-
work, we have to define a heuristic that selects the hyper-parameters λ∗ ∈ Λ that gen-
erates the best generalization ability, thus the best network. This process is commonly
called hyper-parameter optimization. As the objective function not is differentiable
on the hyper-parameters, we must resort to other methods than gradient-based opti-
mization models. The hyper-parameter optimization problem can mathematically be
defined as

λ∗ = arg min
λ∈Λ

Ψ(λ) (3.6.31)

where Ψ(λ) is the generalization error given the hyper-parameters λ. The optimization
problem is however in practice often approximated with

λ∗ ≈ arg min
λ∈{λ(1)...λ(S)}

Ψ(λ) (3.6.32)

where the trial set {λ(1) . . .λ(S)} consists of S trial points. Bergstra and Bengio (2012)
conclude that the most commonly used strategy is a combination of grid search and
manual search. The generalization error can be computed using a single validation
set, or by using the technique of cross-validation, described later. The most critical
step in hyper-parameter optimization is according to Bergstra and Bengio (2012) the
choice of trial points. Let L(k) be values for a variable k in Λ that is promising, and
manually chosen for the hyper-parameter optimization. In manual search, all of the
trial points are chosen manually. In grid search, the cartesian product of manually
identified values {L(1) . . . L(k)} are chosen to be the trial set. Hence, Ψ(λ) is evaluated
for every pair in the cartesian product, and the set that minimized Ψ(λ) is chosen to
approximate λ∗. This approach suffers from the curse of dimensionality, which means
that the number of trial points to be evaluated grows exponentially with the number
of hyper-parameters. In practice, this means that only a few discretized values for
every hyper-parameter can be evaluated.

56

3.6. OPTIMIZATION OF NEURAL NETWORK PARAMETERS

Bergstra and Bengio (2012) argue that random search of parameter values largely
improves the optimal parameter search in high-dimensionality search spaces. The
strategy draws parameter values from a uniform distribution over the same parameter
space that would be spanned by the grid search, and evaluates these on Ψ(λ). Like-
wise, the hyper-parameters that minimized Ψ(λ) is chosen to approximate λ∗. The
advantage is explained in Figure 3.6.7, where optimization of two hyper-parameters
are considered using grid search and random search respectively. Consider this situa-
tion where one wants to maximize f(y, x) = h(y) + g(x). In this case, f(y, x) ≈ g(x),
which is benamed that f has low effective dimension. In the case of grid search, g(x)
is only evaluated on three distinct values of x, and consequently misses to evaluate it
at a point where x gives a high output. On the contrary, the random search evaluates
g(x) on nine distinct values, and consequently is able to find a better solution than the
grid search using the same number of trial points. For the grid search, the trial points
are more evenly distributed on the two-dimensional plane, but not when projected
to the axes of the hyper-parameters. The random search has a slightly more uneven
distribution in the plane, but is more evenly distributed when projected on the axes.
(Bergstra and Bengio, 2012)

Figure 3.6.7: Grid and random search for hyper-parameters for nine trials respectively.
Optimization of f(y, x) = h(y)+g(x) ≈ g(x). It is clear that grid search only evaluate
g(x) in three distinguished points, and misses the functional value top, whereas in
random search g(x) is evaluated in nine distinguished points and is better at hitting
the functional value top, leading to a better hyper-parameter optimization in the same
number of trials

The same principle is often the case in practical applications. If a neural network
designer beforehand knows which hyper-parameters that will affect the final model
the most, he could likely set up a decent grid search, however that is usually not the
case. Some dimensions might be pruned, but usually there will still be uncertainties
in a number of hyper-parameters. Generally, the random search model will make the
hyper-parameter optimization more efficient. Bergstra and Bengio (2012) compare the
efficiency of the random search to the grid search and find that 8 trials with random
search match or outperform the performance of 100 grid searches on average.

Cross validation

When evaluating the generalization error, we have to approximate the out-of-sample
data with something. As previously mentioned, this is usually done using a validation

57

CHAPTER 3. THEORETICAL FRAMEWORK

data set. Bishop (2006) highlights the importance of having a sufficiently amount
of data partitioned to the validation set. If data is plentiful, a portion of the data
can simply be partitioned as the validation set. However, if the data is limited, this
validation set will likely be small, implying a noisy generalization error estimate. By
applying the K-fold cross validation technique the usage of the data is rationalized
and the noise of the generalization error can be decreased. The network is evaluated
K times using K−1

K
of the data for training and 1

K
of the data for evaluation in every

evaluation as illustrated in Figure 3.6.8. The generalization error of the specific trained
network is then set to the average error over the evaluations. As such, all of the data
is used for evaluating the performance of the network. This also provide a network
validated on different types of data. The testing set is held separate of the cross
validation process.

Figure 3.6.8: Illustration of a 4-fold cross validation. The training and validation set
is partitioned into K (4 in this case) subsets and run K times where the validation set
will be the gray subset in every run.

Early stopping criteria might be used together with the cross validation technique
(Enke and Thawornwong, 2005). The K-fold cross validation technique will increase
the number of training runs by a factor of K, which might be a disadvantage, es-
pecially in a setting with computationally expensive training. Further, if several
hyper-parameters are to be distinguished, the number of training runs is increased
exponentially to the number of hyper-parameters (Bishop, 2006).

3.7 Portfolio optimization

To validate whether the estimated expected returns from the neural network models
are useful, i.e. if they can aid in generating excess return on the market, a trading
strategy has to be defined. Numerous mathematical optimization models are defined in
the litterature, e.g. mean variance (Amenc and Sourd, 2003) and two-stage stochastic
programming without recourse decisions (Shapiro et al., 2009). The mathematical
portfolio optimization models determine optimal asset allocation, or portfolio weights,
at specific time steps. As such, this section introduces portfolio optimization models.

3.7.1 Utility functions

Utility functions define the utility U(wi) of a wealth wi. If several outcomes are possible
with probability pi then the expected utility is defined as

E[U(W)] =
n∑
i=1

piU(wi). (3.7.1)

58

3.7. PORTFOLIO OPTIMIZATION

As such, utility functions can be used as to describe the risk aversion of an investor
when the wealth is stochastic. The investor can be categorised into one of three risk
categories according to

U(E[W])− E[U(W)] =


> 0 =⇒ risk averse
= 0 =⇒ risk neural
< 0 =⇒ risk seeking

(3.7.2)

(Amenc and Sourd, 2003)

Luenberger (1998) describe that the utility function generally can take any form, as
long as it is an increasing continuous function, i.e. for w1 > w2 it must hold that
U(w1) > U(w2). Further, Luenberger (1998) present the most common utility func-
tions being the quadratic, power and exponential utility function.

The quadratic utility function is defined with risk aversion parameter a as

U(w) = w − aw2, a > 0, w <
1

2a
. (3.7.3)

The power utility function is defined with the risk aversion parameter γ, where γ = 1
is a risk neutral investor and γ < 1 is a risk averse investor, as

U(w) =

{
ln(w) for γ = 0
wγ

γ
for γ ≤ 1, γ 6= 0

. (3.7.4)

The exponential utility function is defined with risk aversion parameter b as

U(w) = −e−bw, b > 0. (3.7.5)

Luenberger (1998) state that in the long run, an investor with a logarithmic utility
function, U(w) = ln(w), will have higher wealth than an investor with different invest-
ment strategy with probability 1. Although, this is associated with high risk and the
stochastic dominance might take very long time, e.g. several thousands of years. As
such, in the short term, other investment strategies might be beneficial.

3.7.2 Mean Variance

One of the most common models for computing the optimal weights of a portfolio is
the Mean Variance model defined by Markowitz (1952). In this model the returns are
assumed to be normally distributed N(µ,C) and the optimal portfolio weights are
those that maximize the expected value of the portfolio’s utility as

max
1Tw=1

µTw +
γMV − 1

2
wTCw (3.7.6)

59

CHAPTER 3. THEORETICAL FRAMEWORK

where γMV is a measure of the investor’s risk aversion and w is the portfolio weights.
For this model the investor has to have a quadratic utility function and only consider
the first two moments (i.e. expected value and volatility). Further, there can be no
market imperfections (taxes, transaction costs, etc.), interest on lendings and deposits
has to be the same, and the holdings are unlimited. (Amenc and Sourd, 2003)

3.7.3 Stochastic Programming

In the area of mathematical optimization, stochastic programming is modelling of op-
timization problems that involve uncertainty, contrary to deterministic optimization
problems. As stated previously, financial times series involve uncertainty, and is con-
sequently a field where stochastic programming can be applied. In this section we
will consider a two-stage stochastic programming model without recourse decisions.
Shapiro et al. (2009) describe a general stochastic programming problem in the area
of statistical inference as

minimize
x∈X⊂Rn

f(x) = E[g(x, ξ)] (3.7.7)

where ξ is a stochastic vector with pdf supported on a set Ξ ⊂ Rd and g is a known
function that satisfy g : X×Ξ→ R. In the two-stage stochastic programming problem,
g(x, ξ) is given by the optimal value of the corresponding second-stage problem, i.e.
the optimal x given the outcome ξ in the second stage. We assume that f(x) is finite
valued for every x ∈ X, which means that for for x ∈ X g(x, ξ) is finite valued almost
surely for ξ ∈ Ξ.

In practice, the problem has to be discretized using a sample of N scenarios of the
random vector ξ, i.e. ξ1, ξ2, . . . , ξN . This sample might be generated using historical
data of N observations or by simulating the future N scenarios using Monte Carlo sim-
ulation. Once the sample is generated, the problem in (3.7.7) can be approximated by
averaging g(x, ξi) for the scenarios i = 1, 2, . . . , N , and we now have the deterministic
equivalent of the stochastic problem described by

minimize
x∈X⊂Rn

f̂(x) =
1

N

N∑
i=1

g(x, ξi) (3.7.8)

where 1
N

= p can be interpreted as the probability of each scenario incurring. The
approximated problem in (3.7.8) is also known as the sample average approximation
(SAA). Shapiro et al. (2009) assume that each ξj has the same marginal distribution,
cdf, as the data vector ξ, and if each ξj are independent, they are said to be indepen-
dently identically distributed (i.i.d.). We note that if ξj are i.i.d. the approximation
f̂(x) is an unbiased estimator of f(x) as

E[f̂(x)] = E

[
1

N

N∑
i=1

g(x, ξi)

]
=

1

N

N∑
i=1

E[g(x, ξi)] =
1

N

N∑
i=1

E[g(x, ξ)] = E[g(x, ξ)] = f(x)

(3.7.9)
60

3.7. PORTFOLIO OPTIMIZATION

with an error that decreases with
√
N as

V ar[f̂(x)] = V ar

[
1

N

N∑
i=1

g(x, ξ)

]
=

1

N2

N∑
i=1

V ar[g(x, ξ)] =
1

N
V ar[g(x, ξ)]. (3.7.10)

As N →∞ the SAA problem f̂(x) converges to the real problem f(x) with probability
1 under some regularity conditions. (Shapiro et al., 2009)

3.7.4 Scenario generation

Scenarios can according to Shapiro et al. (2009) be generated by using historical data
or by performing Monte Carlo simulation. Monte Carlo simulation is stochastic by
nature, as it is a random sampling of a variable from a probability distribution. Usually
a random variate is drawn from a uniformly distributed variable, X ∼ U [0, 1].

In the context of portfolio optimization, we have a set of random variables with cor-
relation, simulating the portfolio hence must be done with regards to the correlation
structure between the underlying random variables. Therefore, we can not indepen-
dently draw random variates from U(0, 1), to generate scenarios using the Monte Carlo
method we need to simulate a multivariate distribution, and as such we also need to
estimate the multivariate distribution of the underlying assets. A copula is a function
that specifies the correlation structure between random variables, which along with the
univariate marginal distributions enables a description of the multivariate distribution.
The technique is described in Cherubini et al. (2004); Trivedi and Zimmer (2005). The
principle of Monte Carlo simulation using a copula is based on the inversion principle
(Devroye, 1986) and the therorem by Sklar (1959).

Theorem 3.7.1 (Inversion principle) Let F be a continuous distribution on R with
inverse F−1 defined by

F−1(u) = inf{x : F (x) = u, 0 < u < 1}.

If U is a uniform [0, 1] random variable, then F−1(U) has distribution function F .
Also, if X has distribution function F , then F (X) is uniformly distributed on [0, 1].

A consequence of Theorem 3.7.1 is that random variates with an arbitrary distribution
function can be generated with uniformly distributed random variables. Also, random
variates with an arbitrary distribution function can be transformed to uniformly dis-
tributed random variates. (Devroye, 1986)

Theorem 3.7.2 (Sklar’s therorem) Let F ∈ F (F1, . . . , Fn) be an n-dimensional
distribution function with marginal distributions F1, . . . , Fn. Then there exists a copula
C (i.e. an n-dimensional distribution function with uniform marginals) such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

61

CHAPTER 3. THEORETICAL FRAMEWORK

Given univariate marginal distribution Fi(xi) we can according to Theorem 3.7.1
generate uniformly distributed random variate ui = Fi(xi), and equivalently xi =
F−1
i (ui). Hence the multivariate distribution function F (x1, . . . , xn) can be rewritten

as F (F−1
1 (u1), . . . , F−1

n (un)). The copula is now defined as

C(u1, . . . , un) ≡ F (F−1
1 (u1), . . . , F−1

n (un)) = F (x1, . . . , xn) (3.7.11)

which means that the copula only manages the correlation, and the univariate prop-
erties are managed by Fi(xi). The copula C can be interpreted as the distribution
function for multivariate uniformly distributed random variables computed by

C(u1, . . . , un) =

∫ u1

−∞
· · ·
∫ un

−∞
c(v1, . . . , vn)dvn · · · dv1

ui=Fi(xi)
=

∫ F (x1)

−∞
· · ·
∫ F (xn)

−∞
c(v1, . . . , vn)dvn · · · dv1

=

/
subs. vi = Fi(si),

dvi
dsi

=
d(Fi(si))

dsi
= fi(si)⇔ dvi = fi(si)dsi

/
=

=

∫ x1

−∞
· · ·
∫ xn

−∞
c(F (s1), . . . , F (sn))

n∏
i=1

fi(si)dsn · · · ds1.

(3.7.12)

We can also use (3.7.11) and write

C(u1, . . . , un) = F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(s1, . . . , sn)dsn · · · ds1 (3.7.13)

and by comparing (3.7.12) and (3.7.13) we identify that

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏
i=1

fi(xi). (3.7.14)

The density function f(x1, . . . , xn) can be approximated using MLE, as described in
Section 3.2.2, for observations t = 1, . . . , T with the loglikelihood function as

ln(L) = ln

(T∏
t=1

f(xt)

)
= ln

(T∏
t=1

c(F1(xt,1), . . . , Fn(xt,n))
n∏
i=1

fi(xt,i)

)

=
T∑
t=1

ln c(F1(xt,1), . . . , Fn(xt,n)) +
n∑
i=1

T∑
t=1

ln fi(xt,i)

(3.7.15)

which is a large optimization problem. By using the method inference for margins the
optimization problem is solved approximately by estimating the univariate marginal
distributions and the copula separately. In practice, the copula is usually estimated

62

3.7. PORTFOLIO OPTIMIZATION

from a set of different standard copula functions. The copula function that yields
the highest log-likelihood value can be used as an estimation of the copula. Common
multivariate copula functions used are the gaussian copula and the student’s t copula.
The gaussian copula function is defined as

c(u) =
1√
|P|

e−
1
2
N−1(u)T (P−1−I)N−1(u) (3.7.16)

where N−1(u) = (N−1(u1), . . . , N−1(un))T , N is the cumulative distribution function
(CDF) of a standard normally distributed random variable, ui = Fi(xi), P is the
correlation matrix and | · | is the determinant. Using MLE, P is the parameter that
has to be estimated.

The student’s t copula is defined as

c(u) =

(
Γ

(
v
2

))n−1(
Γ

(
v+n

2

)(
1 + Φ−1(u)TP−1Φ−1(u)

v

))− v+n
2

(
Γ

(
v+n

2

)n√
|P|
∏n

i=1

(
1 + 1

v

(
Φ−1(ui)

)2
)− v+1

2

(3.7.17)

where Φ−1(u) = (Φ−1(u1), . . . ,Φ−1(un)), Φ is the CDF of a student’s t distributed
random variable, ui = Fi(xi), P is the correlation matrix, | · | is the determinant, v
is the degrees of freedom, and Γ(t) =

∫∞
0
xt−1e−xdx. Using MLE, P and v are the

parameters that have to be estimated.

A consequence of using the MLE as the estimator of the parameters in the copula
functions, is that the technique assumes that the parameters are stationary. By con-
ducting MLE for the gaussian and student’s t copula, the correlation matrix is held
constant for the entire sample. Instead, estimating a time varying correlation matrix,
one can use multivariate GARCH described in Appendix C.2.

In order to keep the correlation structure of the copula function when doing the Monte
Carlo simulation, Cholesky decomposition might be used. As the correlation matrix
by definition is semi-definite (remember wTCw ≥ 0), the decomposition P = LLT

is possible, where L is a lower triangular matrix. Now, consider the simulation of
Z ∼ N(0, I) that with the transformation a = LZ gives

E[aaT] = E[LZLTZT] = LE[ZZT]LT = LILT = P (3.7.18)

i.e. the original correlation matrix. So by simulating the vector Z = (Z1, . . . , Zn) we
can get a = (a1, . . . , an) = LZ. To get uniformly distributed random variates that has
the original correlation structure we transform a via the inversion principle

u = (u1, . . . , un) = (N(a1), . . . , N(an)). (3.7.19)

Finally, to get random variates xi for the random variables of interest Xi, the inversion
principle can be used with the univariate distributions Fi to get

63

CHAPTER 3. THEORETICAL FRAMEWORK

x = (x1, . . . , xn) = (F−1
1 (u1), . . . , F−1

n (un)). (3.7.20)

Based on the relationship in (3.7.20) the univariate distributions have to be estimated
in order to generate portfolio scenarios. Three different univariate distributions that
is applicable in finance is described in Appendix D.

3.8 Evaluation

To be able to validate whether the purpose of the thesis is fulfilled, we need to evaluate
the predictions of the expected returns and the portfolio optimization. This section
describes models to evaluate the areas respectively.

3.8.1 Prediction of expected return

For predictions, both error metrics and statistical tests can be utilized to evaluate the
performance. The most common statistical tests for forecast accuracy equality will be
presented. The most promising tests will be described in depth, whereas the other will
be presented briefly based on their large scope.

The error metrics in Section 3.6.4 can give a hint of the predictive performance of
a forecast. Diebold (2015) claim that when comparing the predictive accuracy of
different forecasts, a forecaster usually compare a number of forecasts with a number
of outcomes on the predicted variable. Let εt = yt − y

(A)
t denote the forecast error

of forecast A at time t. A loss function L(·) is defined to quantify the error of the
forecast, and might be e.g. the absolute forecast error, or the square of the forecast
error, defined respectively by

L1(εt) = |εt|, L2(εt) = ε2t . (3.8.1)

However, the actual difference is not enough to tell whether one forecast is statisti-
cally better than another. Consider a comparison between two forecasts, y(A)

f and
y

(B)
f , where the root mean of the quadratic losses (RMSE) are ˆRMSEA = 1.2 and

ˆRMSEB = 1.5. Obviously ˆRMSEA < ˆRMSEB and one might draw the conclusion
that A provides better forecasts than B. Diebold (2015) describes that forecasting
literature is filled with such conclusions, although, the superiority of forecast A might
be based on merely luck of the actual values in the sample, thus the conclusion is
statistically unsatisfactory.

Simple F-test

A simple statistical test of forecast equality is the simple F-test. Consider a hypothesis
test with null hypothesis that the forecast error of two forecasts are equal. If the
assumptions of two forecasts in Table 3.8.1 are satisfied

64

3.8. EVALUATION

Table 3.8.1: Common forecast assumptions

Common forecast assumptions

1. Loss is quadratic
2. Forecast errors are:
(a) Zero mean
(b) Gaussian
(c) Serially uncorrelated
(d) Contermporaneously uncorrelated

then under the null hypothesis of equal forecast accuracy the forecast error variance
is equal and the ratio of sample variances has the F (T, T) distribution. Hence, under
the null hypothesis it holds that

F =

εTi εi
T

εTj εj

T

=
εTi εi
εTj εj

∼ F (T, T) (3.8.2)

where εx ∈ RT×1, x = i, j, contains the errors of forecasts. However, due to the strict
restrictions in Table 3.8.1, the test static in (3.8.2) is rarely useful. (Diebold and
Mariano, 1995)

Granger-Newbold and Meese-Rogoff Tests

Granger and Newbold (1977); Meese and Rogoff (1988) have defined statistical tests
of forecast accuracy equality between two forecasts. Both of these tests relaxes as-
sumptions made in Table 3.8.1, but none of the model relaxes all of the assumptions
at once. The Meese and Rogoff (1988) tests can relatively easy relax (2a)-(2c) one at a
time, while keeping (2d) relaxed for all tests. Simulataneoues relaxation of (2a)-(2d) is
possible, but very tedious (Diebold and Mariano, 1995). Granger and Newbold (1977)
have similar properties for relaxing the assumptions, where simultaneous relaxation is
tedious, and like the Meese and Rogoff (1988), assumption (1) may not be relaxed.

Diebold-Mariano Test

Diebold and Mariano (1995) defined a statistical test for forecast accuracy equality be-
tween two forecasts. The test can be adopted for a vast range of forecast situations, as
it can handle non-quadratic and asymmetric loss functions, and the forecast errors can
be non-gaussian, nonzero mean, serially correlated and contemporaneous correlated,
i.e. deals with all assumptions in Table 3.8.1. Let L(εt) denote the loss associated with
error ε. Let dt = L(ε

(1)
t) − L(ε

(2)
t) denote the loss differential between forecasts 1 and

2. Following assumptions about the loss differential is made, equaling an assumption
about stationarity of the loss differential:

65

CHAPTER 3. THEORETICAL FRAMEWORK

Assumptions:


E[dt] = µ, ∀t

Cov[dt, dt−τ] = γ(τ), ∀t
0 < V ar[dt] = σ2

d <∞
(3.8.3)

The null hypothesis H0 and the alternative hypothesis H1 is now defined as (3.8.4).
The hypotheses in (3.8.4) test for nonzero loss differential, i.e. that one forecast has
lower loss than the other, irrespectively if it is forecast 1 or forecast 2. Alternatively,
if we want to test that forecast 2 has higher accuracy than forecast 1 we might alter
the hypotheses to a one-sided test as in (3.8.5).

Table 3.8.2: Null respectively alternative hypotheses for two- respectively two-sided
test of loss differential nonzero property

Two-sided test One-sided test

H0 : E[dt] = 0

H1 : E[dt] 6= 0
(3.8.4)

H0 : E[dt] = 0

H1 : E[dt] > 0
(3.8.5)

Under H0 and the central limit theorem (Blom et al., 2005) it must hold that the test
statistic, DM , is asymptotically normally distributed as

DM =
d̄

σ̂d̄
≈ N(0, 1) (3.8.6)

where d̄ = 1
T

∑T
t=1 dt is the sample mean of the loss differential and σ̂d̄ =

√
2πf̂d(0)

T
is

a consistent estimate of the standard deviation of d̄, where fd(0) = 1
2π

∑∞
−∞ γd(τ) and

the autocovariance at lag τ is γd(τ) = E[(dt−µ)(dt−τ −µ)]. Suppose we have a h > 1
−step ahead forecast we can now obtain a consistent estimate of 2πfd(0) as a weighted
sum of the available sample autocovariances as

2πf̂d(0) =
T−1∑

τ=−(T−1)

I
(τ

h− 1

)
γ̂d(τ) (3.8.7)

where

γ̂d(τ) =
1

T

T∑
t=|τ |+1

(dt − d̄)(dt−τ − d̄) (3.8.8)

and

66

3.8. EVALUATION

I
(τ

h− 1

)
=

{
1 when

∣∣ τ
h−1

∣∣ ≤ 1

0 otherwise
. (3.8.9)

We also note that

γ̂d(τ) = γ̂d(−τ), and I
(τ

h− 1

)
= 0 for |τ | > h− 1 (3.8.10)

and thus we can simplify (3.8.11) to

2πf̂d(0) = γ̂d(0) + 2
h−1∑
τ=1

γ̂d(τ). (3.8.11)

For h = 1 we can further simplify the relationship in (3.8.11) to

2πf̂d(0) = γ̂d(0)
(3.8.8)

=
1

T

T∑
t=1

(dt − d̄)2. (3.8.12)

Conclusively, if the test staticDM violates the critical limit for the normal distribution,
the null hypothesis can be rejected in favor of the alternative hypothesis. For example,
if a two-sided test is conducted at a 95 % significance level, the null hypothesis will be
rejected if |DM | > z0.025 = 1.96.

Pesaran-Timmermann Test

Further, Pesaran and Timmermann (1992) define a model-free test for evaluating the
forecast accuracy in terms of the direction of the change in a variable of interest. The
test gives information whether the forecast is statistically significantly predicting the
correct sign of the change, and might hence be useful when the direction of the forecast
is of interest, i.e. a forecast predicting if the change is positive or negative ignoring
the magnitude of the change. Let yt denote the actual change and ŷt be the forecasted
change for a series of length T . Let the null hypothesis be that ŷt is not able to predict
the sign of yt, then under the null hypothesis it must hold that

PT =
P̂ − P̂∗√

V ar[P̂]− V ar[P̂∗]
∼ N(0, 1) (3.8.13)

where the location values are estimated by

P̂ =
1

T

T∑
t=1

I(ytŷt), and P̂∗ = P̂yP̂ŷ + (1− P̂y)(1− P̂ŷ) (3.8.14)

and the variance is

67

CHAPTER 3. THEORETICAL FRAMEWORK

V ar[P̂] =
1

T
P̂∗(1− P̂∗) (3.8.15)

and

V ar[P̂∗] =
1

T
(2P̂y − 1)2P̂ŷ(1− P̂ŷ) +

1

T
(2P̂ŷ − 1)2P̂y(1− P̂y) +

4

T
P̂yP̂ŷ(1− P̂y)(1− P̂ŷ)

(3.8.16)

P̂y =
1

T

T∑
t=1

I(yt), P̂ŷ =
1

T

T∑
t=1

I(ŷt) (3.8.17)

I(·) =

{
1 when · > 0

0 otherwise
. (3.8.18)

Then the null hypothesis is rejected in favor of the alternative hypothesis that ŷt is able
to predict the sign of yt when |PT | > zα

2
where zα

2
is the critical limit at significance

level α.

3.8.2 Portfolio optimization

When evaluating the performance of a portfolio it is not enough to only consider the
return, the risk taken should also be emphasized in the performance evaluation. MPT
and CAPM do provide a quantitative link between return and risk, and hence can
provide a risk-adjusted return which enables comparison of portfolios with different
risk levels. (Amenc and Sourd, 2003)

A common performance metric is the sharpe ratio defined by Sharpe (1966) that relates
the portfolio return rP less the riskfree rate rf with the total risk of the portfolio,
measured by the standard deviation σP . As the relationship is drawn from MPT and
not CAPM, the metric does not inherit the citicism by Roll (1977). The Sharpe ratio
SP is defined as

SP =
rP − rf
σP

. (3.8.19)

Jensen (1967) defined a performance metric stemming from CAPM that evaluate the
portfolio in relation to its systematic risk, βP . The metric αP is determined by linear
regression of the model with the serially independent error term εt, E[εt] = 0, defined
as

rP,t − rf,t = αP + βP (rM,t − rf,t) + εt (3.8.20)

and can be interpreted as the excess return of the portfolio on the market index. As
the metric benchmarks against an index, it will not give a risk-adjusted return, and
should hence be used when comparing portfolios with the same risk level. By the

68

3.9. EMPIRICAL TESTS

nature of the linear regression model, a hypothesis test for the sign of αP can be
established, providing the significance level on possible excess return. The hypotheses
are H0 : αP = 0 and H1 : αP > 0. Hence, the probability for the excess return
deriving from pure chance can be determined. Commonly, a maximum probability of
5 % of pure chance (or likewise minimum 95 % significance level) is used to say that
the excess return is statistically significant, which corresponds to a t-statistic for αP
of approximately 1.658.

Treynor (1965) defined the Treynor Index as a relationship between the portfolio return
rP less the riskfree rate rf divided by its systematic risk βP , described as

TP =
rP − rf
βP

. (3.8.21)

The metric gives a systematic risk-adjusted return, and is hence best used when a
portfolio is only a subset of the investors total holdings, as an investor that only hold
portfolio P will still be exposed to unsystematic risk. A portfolio that is sufficiently
risk-rewarded satisfies

TP ≥ rM − rf (3.8.22)

as rM − rf is the Treynor Index for the market portfolio as βM = 1. When similarity
applies, (3.8.22) describes the relationship between the Treynor Index and CAPM.
(Amenc and Sourd, 2003)

3.9 Empirical tests

In this section we will present some empirical studies where researches have applied
commonly used paradigm’s of neural networks to predict financial time series of as-
sets relevant to the context of this thesis. Further, their parameter choices will be
provided and their conclusions will be highlighted in order to strengthen our choice of
methodology.

3.9.1 The use of data mining and neural networks for forecast-
ing stock market returns

Enke and Thawornwong (2005) examine different neural network classes to predict
S&P500 less the riskfree rate (approximated with T-bill) on monthly basis. Specif-
ically, FFNNs were developed to both predict the continuous value (regression) and
the next period direction (classification). Two more network classes, one for each
task, Generalized regression neural network (GRNN) and Probabilistic neural network
(PNN) were also tested and all of them benchmarked against the tradition linear re-
gression model. Due to the fact that the task of the network in this thesis is of a
regression type, only their final choice of Neural Network for the regression task and

8One sided confidence interval, T−1(0.95) = 1.65 with large number of degrees of freeedom. Cor-
responding number for a double-sided confidence interval is T−1(0.975) = 1.96.

69

CHAPTER 3. THEORETICAL FRAMEWORK

its parameter choices as well as the method utilized to determine them is provided in
Table 3.9.1.

Table 3.9.1: Parameter choice of the optimal ANNs in Enke and Thawornwong (2005)
research paper

Parameter type Method Parameter choice

Data period Monthly basis 1976-1999
Input type Knowledge based Fundamental data
Input Knowledge based 31
Input after RA9 Inductive learning decision tree 15
Preprocessing Normalization [-1,1]
Activation function Previous studies Sigmoid hyperbolic tangen function
Error function Previous Studies MSE
Weight optimization Previous studies Resilient Backpropagation10

Generalization improvement Previous studies Five-fold CV and ES
Hidden layers Previous studies 1
Ouput Problem dependent 1
Hidden neurons Trial and error 21
Learning rate Trial and error 0.2
Network selection criterion Previous studies RMSE

With a hypothesis of getting further improvement of the forecasting performance, Enke
and Thawornwong (2005) also examined a portfolio network model, i.e. ensemble
averaging, consisting of a 5-network-combination of the network architectures that
produced the lowest RMSE in each omitted fold from the cross-validation experiment.

The evaluation was based on metrics of the performance on out-of-sample data. The
metrics were: RMSE, Pearson Correlation between the actual out-of-sample return
and the prediction, and the proportion of time the sign of stock return was correct.
The results are provided in Table 3.9.2

Table 3.9.2: Performance metrics for the three different ANN models

Model RMSE Correlation Sign

Portfolio Neural Network 1.1206 0.0528 0.6860
Original Neural Network 1.1614 0.0231 0.6628
Linear Regression 1.4467 0.0300 0.4767

This shows that utilizing ensemble averaging improved the FFNN with respect to all
the metrics. Further, both of them shows a better estimation than the traditional
linear regression model.

9Relevance Analysis
10A tweak of the gradient descent, where the magnitude of the gradient is discarded, and the

magnitude of the weight update is calculated with a learning rate that increases in magnitude if the
sign is the same for successive steps

70

3.9. EMPIRICAL TESTS

Enke and Thawornwong (2005) highlight the success of improving the generalization
ability of feed-forward neural networks by utilizing a combination of n-fold cross-
validation and early stopping techniques. The method clearly helped improving the
out-of-sample forecasts. Further, they express that including a combination of both
technical and fundamental information as input during the relevance analysis would
provide invaluable information that with no doubt would be a major improvement.

A simple trading strategy is also implemented to test if the predictions could generate
any profit. The trading strategy is specified as such that the portfolio will invest all
wealth in the stock index if the prediction of the return less the riskfree rate is positve,
else it will invest everything in a T-bill. The portfolio is re-allocated monthly. The best
level ANN, i.e. the portfolio ANN, did slightly beat a buy-and-hold strategy during
the evaluated period, Nov-92 to Dec 99, with an average monthly return of 1.58 % and
Sharpe ratio of 0.34, compared to a monthly return of 1.54 %.

3.9.2 An investigation of model selection criteria for neural
network time series forecasting

Qi and Zhang (2001) investigate the potential of applying ANNs to forecast financial
time series on a longer time horizon viz. 1 year, 4 years and 8 years. Further, they
look at 3 different financial time series: S&P500, US interest rate (T-bill) and exchange
rate between British pound and us Dollar (USD/BP). They utilize data points on a
different horizon than the forecast horizon, monthly for S&P 500 and T-bill, and weekly
for exchange rate. Special focus in this paper is to determine whether an in-sample
model selection criteria is useful as a model selection approach versus cross-validation,
referred to as an out-of-sample model due to the network evaluation in the validation
set.

With motivation that the universal approximation theorem holds they construct a 3-
layer FFNN and evaluate the performance while changing the number of input nodes
used as well as the number of hidden neurons between 1-5. To evaluate the performance
they look at several performance measures RMSE, MAE, MAPE, DA and Sign, but
put extra focus on RMSE, the network with the lowest RMSE forecasting on 1 year
horizon is presented in Table 3.9.3.

As benchmark they construct a linear auto regression (AR) model and a random walk
(RW) model which are used on the S&P 500 data. Qi and Zhang (2001) claim that
both models are according to the literature relevant and applicable when predicting
the return of financial assets. The performance provided in Table 3.9.3 shows the
relevance of using ANN to predict estimated return on all the time horizons.

Qi and Zhang (2001) draw the conclusion that the popular in-sample criteria AIC and
BIC are not very useful in neural network time series forecasting. One reason is that
the criteria penalize models with more parameters which is useful in statistics where
the number of parameters often is small whereas time series prediction and neural
network in particular tends to involve more parameter in order to do an adequate fit.
Further, the results of the study shows that there is no connection between the model

11Backpropagation of gradient
12AIC=Akike Information Criterion, BIC=Bayesian Information Criterion

71

CHAPTER 3. THEORETICAL FRAMEWORK

Table 3.9.3: Parameter choice of the optimal ANNs in Qi and Zhang (2001) research
paper

Parameter type Method Parameter choice

Data period Monthly basis 1954-1992
Input type Previous studies Past returns
Input Trial and Error 5
Activation function (HL) Previous studies Sigmoid
Activation function (Output) Previous studies Identity function
Error function Previous Studies SSE
Weight optimization Previous studies Gradient descent with BP11

Generalization improvement Previous studies AIC and BIC12

Hidden layers UAT 1
Ouput Problem dependent 1
Hidden neurons Trial and Error 5
Network selection criterion Previous studies RMSE

Table 3.9.4: Performance of the ANNs and benchmarks on three time horizons mea-
sured by RMSE x 100

Model S&P 500

Forecast horizon 1 4 8

ANN
(Input, Hidden neurons) (5,5) (5,1) (5,1)
RMSEx100 3.149 5.587 4.875

AR 3.374 5.584 4.875
RW 3.986 7.441 6.762

chosen by the criteria and the model that had the best performance measures out of
sample. For example, looking at the S&P500 forecast on one year horizon, according
to RMSE, AIC and BIC in-sample a (1,4) network is the best whereas out-of sample it
is shown that (5,5) has the best predictive capability according to the RMSE metric.
They highlight that their findings is in line with a vast amount of previous studies
showing correlation between in-sample and out-of-sample is 0.2.

We also emphasise that according to Table 3.9.5 there is wide inconsistency of what
architecture that was best between the different assets classes while the architectures
between the different time horizons seem to have more consistency especially according
to the number of input nodes.

72

3.9. EMPIRICAL TESTS

Table 3.9.5: Architecture of the best performing ANNs for the three asset classes and
three time horizons

Model S&P 500 T-Bill USD/BP
Forecast horizon 1 4 8 1 4 8 1 4 8

(Input, Hidden neurons) (5,5) (5,1) (5,1) (2,2) (3,5) (3,5) (1,5) (2,2) (2,1)

3.9.3 Much ado about nothing? Exchange rate forecasting:
Neural networks vs. linear models using monthly and
weekly data

Hann and Steurer (1996) evaluate the predictive performance of ANNs for predicting
exchange rate between US-dollar and German-deutsche mark (US/DM), and bench-
marks it compared to a naive and a linear regression model of the type ordinary least
square (OLS). The time horizon of the prediction in this study is one month and the
major focus is to evaluate the difference of predictive performance by using different
time length of the exogenous inputs. The motivation is that using monthly data de-
creases number of data points which might lead to an overfitted network and daily data
are to noisy to fundamentally predict the exchange rate. By using weekly data one
could increase the data points and the nonlinear behaviour of weekly data is favoured
by neural nets comparing to other models. Hence, the study comprise prediction based
on data on monthly and weekly basis separately and the choice of ANN is provided in
Table 3.9.6.

Table 3.9.6: Parameter choice of the optimal ANNs in Hann and Steurer (1996) re-
search paper

Parameter type Method Parameter choice

Data period Weekly/Monthly basis 1986 - 1992
Input type Previous studies Fundamental
Input SC13 - Knowledge based 13
Preprocessing Cointegrated time series Cointegration model
Activation function (HL) Previous studies Sigmoid function
Activation function (Output) Previous studies Identity function
Weights optimization Previous studies Backpropagation
Generalization improvement Previous studies Cross validation & rolling window
Hidden layers UAT 1
Ouput Previous studies 1
Hidden neurons PCA14 4

In this study the rolling window procedure was employed for both the linear and
the neural net. The size of the training set was held constant and after predicting

13Schwarz Information Criterion
14Special technique for this paper of how to determine number of hidden neurons

73

CHAPTER 3. THEORETICAL FRAMEWORK

three months ahead, the models were retrained. However, the author outline that this
procedure did not lead to any significantly different results than keeping the weights
constant.

Their results and evaluation were presented by comparing the results of a simpler
trading strategy that utilized the outputs of these three predictions models, i.e. the
estimated return. The metrics used are: Hit rate of the prediction, i.e. the probability
of estimating the right direction of the return, annual return and Sharpe Ratio (SR),
in this case defined as the annual return in proportion to the risk (volatility). The
results using weekly (W) and monthly (M) sampling of the inputs are provided in
Table 3.9.7

Table 3.9.7: Evaluation of the ANN and the benchmarks respectively models

Model Hit rate Return SR

Sampling frequency W M W M W M

ANN 55.81 64 14.75 17 6.55 3.7
Naive 44.19 59.5 -6.06 11.5 -3.25 1.8
OLS 54.65 61.9 6.90 18.7 3.58 3.5

Concluding remarks are that both the ANN and OLS outperform the Naive model
according to all metrics in both cases. Further, ANN outperforms OLS when weekly
data is used, although the Granger and Newbold (1977) test did not show any statis-
tically significantly differences in prediction accuracy, whereas if monthly data is used
the results are similar. The author claim that this is motivation of using ANN when
there is non linearity observed in the data.

74

Chapter 4

Method

This chapter presents the methodology of the proposed model to answer the objective
of the thesis and also how the results are to be evaluated with perspective to determine
its relevance.

4.1 Data

This section describes the software used to build this model and how the data have
been collected and prepared.

4.1.1 Software

The neural network model will be implemented in Matlab using the Neural Network
Toolbox. The portfolio optimization will be implemented in Matlab, as well as all of
the evaluation of the project. Microsoft Excel will be used as bridge to manage the
data before implementation in Matlab.

4.1.2 Processing

The last data point considered in this project will be 2017-05-05. The data will be
collected via the Bloomberg database, sampled at weekly frequency. Weekly data
points reduces the effect of different closing times of different indices versus daily
time stamps. Also, shorter time stamps tend to be more noisy, and as the goal is to
estimate expected return on a quarter’s horizon, daily time stamps are considered to
be too short. Quarterly sampling would be dissatisfying based on the small data set
such sampling would yield. The shortest times series is only available from 2003-01-03,
equaling 61 data points to date at quarterly sampling. It is important to note however,
even if the data is sampled at weekly frequency, returns from a longer horizon can be
generated and used as input in the model. Hann and Steurer (1996) underpin the
relevance of weekly sampling when predicting monthly returns. Training examples
will hence be generated by sliding the input-output mapping one week ahead at a
time.

75

CHAPTER 4. METHOD

For the portfolio constituents1 the times series are available from the date as indicated
in Appendix B. Some of the indices are quoted in foreign currencies. Therefore the
data is converted to SEK, which is a feature supported directly in the Bloomberg
software. This is done since the stakeholders of the proposed model are Swedish. As
the return in an index converted to SEK is a product of the return of the index in
its original currency and the return in exchange rate, the volatility will be greater in
SEK. However, using the FX-converted returns is a conscious delimitation based on
the great scope inflicted by the neural network estimation of the expected return.

Returns rt will be calculated from the prices St from Bloomberg as log-returns in order
to keep additivity in time, i.e.

rt = ln

(
St
St−1

)
. (4.1.1)

The approximation that a quarter is equal to 12 weeks (a month is approximated with
4 weeks) will be made to simplify data management, i.e. the return for a quarter is
approximated with

r
(q)
t =

11∑
i=0

rt−i. (4.1.2)

The time period will be partitioned into two major data sets. The first data set will be
allocated to model selection purposes, i.e. functional approximation of neural network
input/output mapping for expected value estimation and selection of stochastic process
for asset returns. Consequently, the first data set, model selection set, will consist of
training and validation set in regards to neural network terminology. The second data
set will be used to do the final testing of the neural network predictive performance, as
well as by the portfolio optimization model. As such, the second data set corresponds
to the test set of a neural network, as well as the period where portfolio weights are
optimized. The second data set is also the set where the total model will evaluate
whether it could generate excess return on the market or not.

The portfolio optimization will be run approximately for 4 years, and set to 16 quarters,
i.e. 192 data points. As such, the test set will be partitioned to consist of data points
after 2013-08-30. This partitioning is decided with motivation to create enough data
points to train the network while it leaves enough data points to evaluate it. For the
model selection purposes, the length will vary per asset according to the available data.

4.2 Phase 1: Neural network

A phase 1 decision tree is presented in Figure 4.2.1 containing decisions that will have
to be made when creating the neural network.

1Note that the terminology portfolio constituents, assets and indices refer to the asset class indices
whose expected return is to be estimated by the neural networks as well as managed by the portfolio
optimizer.

76

4.2. PHASE 1: NEURAL NETWORK

Phase 1

Model selection Network paradigm Network training

Algorithm

Metrics

Class

Architecture

Neurodynamics

Preprocessing

Data set parti-
tioning

Error function

Training model

Overfitting pre-
vention

Figure 4.2.1: Overview of the decisions included in phase 1

4.2.1 Model selection algorithm

Determining values of the great number of hyper-parameters will be done by either
manual search or the model selection algorithm (MSA). Manual search will be applied
to the hyper-parameters with a choice that has consensus in the theory and the rest
will be left to the MSA. To determine the set of hyper-parameters that the MSA is
optimizing over, random search will be applied. The rationale for using random search
is that the random search has been shown by Glorot and Bengio (2010) to find better
hyper-parameters in the same amount of trial points than the grid search. The size of
the set of hyper-parameters that MSA will evaluate, from the random search picking,
will in this report be named as the number of random searches 2.

The random search will feed the MSA with an amount of hyper-parameters within a
prespecified relevant interval where its limits will be decided through extensive tests
in the model selection data set. The MSA will evaluate networks with different com-
binations of hyper-parameters. Consequently, increasing the total number of random
searches, S, will increase the size of the optimization and the total computational time.
On that basis the hyper-parameters will be delimited in such way that the networks
will be computed in a reasonable time (≈ one night, 8 hours, optimization).

Hence, the number of random searches, and subsequently the hyper-parameters set, for
each hyper-parameter will be determined in such way that its large enough to evaluate
values that might be optimal but still does not exceed a relevant number of random
searches in regards to computational time.

Different choices of hyper-parameters will be done for every portfolio constituent ac-
cording to a model selection algorithm for each of the constituents.

The random search will draw uniformly distributed random variates in order to gener-
ate S random searches λ(1),λ(2), . . . ,λ(S) for the neural network model. The optimal
choice of hyper-parameters λ∗ will be selected according to

2Example: A random hyper-parameter, θ ∈ {1, 2, 3, 4, 5}, with random search picking and two
random searches, will feed the MSA with two alternative choices

77

CHAPTER 4. METHOD

λ∗ = arg min
λ∈{λ(1)...λ(S)}

Ψ(λ) (4.2.1)

where the generalization error Ψ(·) will be determined as a sum of the validation set
errors, Jvalidation(Wk|λ), in the k:th cross-validation sets according to

Ψ(λ) =
M∑
k=1

Jvalidation(Wk|λ) (4.2.2)

where the weights Wk|λ in cross validation set k ∈ {1, 2, } is conditional on λ. The
validation set error function is defined in Section 4.2.7. There are K-folds of the
cross-validation. The choice of using cross-validation as method for evaluating the
hyper-parameters is justified by the decreased randomness in generalization error by
using several validation sets instead of one. The number of folds, K, will be chosen to
5. As such, for each cross-validation run, the neural network will be trained on 80 %
and validated on 20 % of the model selection data. This ratio between training and
validation is approximately the same as with the common partitioning of 70-15-15 %
in training-validation-test set, (i.e. 80

20
= 4, 70

15
≈ 4, 7).

As the λ∗ will be a source to 5 different set of weights Wk|λ∗ , one for each cross-
validation fold, the optimal set of weights will be decided according to

W∗
λ∗ = arg min

Wm|λ∗
Jvalidation(Wm|λ∗), m = 1, . . . ,M. (4.2.3)

Deciding which set to use could be done by the ensemble averaging methodology
presented by Enke and Thawornwong (2005) but is considered inappropriate and thus
neglected, since it is a try to create a good solution by averaging a couple of bad
solutions. Instead, we choose the one which is best according to its validation set.

Data partitioning

The data set will be randomly permuted in order to deal with the risk of biasing the
neural networks towards certain market conditions. The random permutation will be
held constant for all testing of hyper-parameters, and training. Once the data set is
randomly permuted it will be divided into five equally sized blocks, where each of the
blocks will act as the validation set in the five cross-validation runs, with the remaining
four blocks as the training set.

4.2.2 Class

A feedforward network will be used as the class for this study which align with the most
successful previous studies. Feedforward network is according to Haykin (2009) more
stable then alternatives such as a recurrent network. Further, this study has the learn-
ing task of a hybrid between function approximation and prediction for which Haykin
(2009); Hagan et al. (2014) recommend the multilayer feed forward class whereas a

78

4.2. PHASE 1: NEURAL NETWORK

recurrent network is more applicable in a controlling problem. A feedforward network
has another benefit of enabling the use of the successful back propagation training
model which also motivate this choice.

ŷ(t) = f(t) = ϕo

(
ML−1∑
jL−1=0

w
(L−1)
jL−1,jL

ϕh

(
· · ·

M2∑
j2=0

w
(2)
j2,j3

ϕh

(M1∑
j1=0

w
(1)
j1,j2

xj1(t)

)))
(4.2.4)

4.2.3 Architecture

Most of the hyper-parameters of the architecture will be defined by the model selection
algorithm since it is easy to vary the parameters and difficult to upfront set a specific
value. Intervals will be determined through tests and with endorsement from studies
within optimization the hyper-parameters will be specified with random search and
subsequently determined through performance evaluation, i.e. MSA. Some hyper-
parameters with a choice that is consensus in the literature will be pre-defined in
order to decrease the total number of random searches and thus the computational
time, to increase focus on optimizing the most crucial hyper-parameters.

Input

Our methodology of determining the input vector, x, will be divided into three parts.
First, a bank of potential information holders will be collected. Secondly, a relevance
analysis will be conducted to determine which of these inputs that contain information
about each portfolio constituent’s future return. The relevance analysis will be done
by a two-sided Pearson correlation test between the collected bank of potential inputs
and the index whose return to be estimated. Pearson correlation will capture linear
and monotonic3 relationships. It will though not capture non-linear, non-monotonic
relationships, but in absence of good metrics for such relationships a delimitation in
the relevance analysis is made to use the Pearson correlation metric. The Pearson
correlation test is used to test the null hypothesis H0 : ρ = 0 vs. the alternative
hypothesis H1 : ρ 6= 0. This test holds if the underlying variable has a normal dis-
tribution, whether that is true or not is not considered to be crucial regarding the
purpose of the test. However, under the null hypothesis it holds that the following
test statistic has a Student’s t-distribution

T = ρ

√
M1 − 2

1− ρ2
∼ t(M1 − 2). (4.2.5)

(Rahman, 1968)

A correlation of 0.088 given 500 points of estimation will violate the critical limit of
the test and hence the null hypothesis will be rejected, and the input will be concluded
to contain useful information. Finally, to reduce the number of inputs used but keep

3The Pearson correlation will not yield a metric of 1 of a perfect monotonic relationship, but will
still be separated from 0, which is the test that is conducted.

79

CHAPTER 4. METHOD

as much information as possible a PCA will be conducted where the number of eigen-
vectors to be used will be determined by the random search algorithm. The limits for
the random search will be determined by conducting tests in the model selection data
set for different architectures and assets.

The inputs collected to our bank will consist of fundamental and technical data. As
fundamentals, macroeconomics will be used to capture global economic activities which
most likely have an impact of our portfolio constituents. The macroeconomic factors
that will be used has been compiled together with Söderberg & Partners and the team
working with macro economical analysis, see Appendix B.1, and will be collected via
the Bloomberg database.

Since our portfolio constituents are macroeconomic indices themselves, these will also
be a part of the bank of potential inputs. As such, the portfolio constituents will
undergo the relevance analysis, to determine whether they have impact on index to
be estimated or not. The input with shortest available data points will have direct
impact on the limit of the training set. Since some of the times series are considerably
shorter than others, the input bank will only consist of those indices that are at least
as long as the times series for the return to be estimated. So, the bank of potential
inputs will be specific to each of the neural networks. This is to be enable to keep as
many training examples as possible.

Both microeconomics and business specific variables are irrelevant since indices are
used as portfolio constituents. Consequently, factors from the multi-factor models are
neglected.

The technical inputs will consist of time lagged returns of the specific index return,
r

(Q)
t+1Q, to be estimated. This will according to Cont (2001) capture the existing auto-
correlation that exists between present and historical time periods. Due to the fact that
we are estimating on a quarterly basis and uses data with weekly intervals the returns
used in the tapped delay line and eventually the neural network will be converted
to monthly and quarterly returns. Weekly historic returns might lack information of
the return during the coming quarter, even though we are lagging several weeks back,
with consideration of the importance of limiting the number of inputs. As such, the
conclusion is drawn that lagging months and quarters will render more information per
lagged input used. Quarterly data will be used as previous periods return and monthly
data will be used to capture potential technical momentum of the index. Lagged data
will reduce the training data proportional to the lagging period, conclusively, a tapped
delay line with lagged returns up to 36 weeks (0-2 quarterly returns lagged, 0-8 monthly
returns lagged) before the specific date to be estimated will be used and fed to the
bank of potential inputs. Figure 4.2.2 show the tapped delay line for monthly returns
(M), and equivalently will be done for quarterly returns. Remember the fact that
r

(Q)
t+1Q is to be estimated a quarter in forward which implies that the first return r(Q)

t ,
i.e, lagg 0, used as input is 12 weeks before the targeted return.

80

4.2. PHASE 1: NEURAL NETWORK

...

z−1

z−1

z−1

r
(M)
t r

(M)
t

r
(M)
t−1M

r
(M)
t−2M

r
(M)
t−8M

Figure 4.2.2: Visualization of the tapped delay line for monthly returns, where r(M)
t is

the latest month’s return, and r(M)
t−1 , . . . , r

(M)
t−8 are the time lagged monthly returns.

The specific lags to be used in the network will be determined through the relevance
analysis. Returns from the other portfolio constituents will also be used as technical
inputs without using a tapped delay line.

If, according to the theory, the currently best models features predictive capabilities
when it comes to estimate the expected return this is useful information we wish to
use. Consequently, the networks for all portfolio constituents except the FX-rates will
be fed with the next period estimation from CAPM. CAPM is not suitable to estimate
FX-returns hence, the networks to predict the expected return for FX-rates will be
fed with 0 from the random-walk model. Any spectacular successful results regarding
their predictive capability have not been found though, but they have not been proven
beaten with any other model and are the benchmarks for our networks. However, if
they can provide information the networks will extract it.

All other technical indicators are neglected with motivation that these indicators are
just processed returns and will not provide additional information than the lagged
returns.

In Table 4.2.1 there is a summary of the bank of potential inputs. Keep in mind that
this is the maximal number of inputs fed to the bank, constituents that has more
available data points will have a reduced number of inputs, as discussed previously.
The bank of potential inputs can be divided into three subgroups. The technical
indicators refers to the subgroup consisting of lagged returns of the index which return
is estimated. Index returns is the subgroup of the portfolio constituents where the last
quoted quarterly returns are being used. The macro factors consist of the latest quoted
macro economical time series. Lag number refer to the time lag from the estimation
date.

81

CHAPTER 4. METHOD

Table 4.2.1: Summary table of the bank of potential inputs for the neural networks
respectively.

Subgroup Time period Lag # Unit

Technical Indicators

Lagged returns Monthly 0-8 9 Log-returnQuarterly 0-2 3

CAPM/RW4 Quarterly 0 1 Log-return

Index returns Quarterly 0 14 Log-return

Macro factors Weekly/Monthly/Quarterly5 0 39 Index Point/Relative change6

Hidden layer

The number of hidden layers will set the number of total layers, L, since the output
layer and input layer is pre specified to be one respectively, hence the number of
hidden layersLh will be L− 2. This parameter will be determined through the model
selection algorithm with pre-specified limits from tests. A single-layer feed forward
neural network, i.e. no hidden layer, does not have the capability to capture non-
linearities which exclude the possibility of using a SLFFNN. Further, the UAT says
that one hidden layer is enough which also is the most frequently used of previous
researchers. Chester (1990) though claims that there could be beneficial to increase
the hidden layers to decrease the number of hidden neurons in the first hidden layer
drastically. There is also incentives to enable the model selection algorithm to try one
more hidden layer from the theorem stated by Kolmogorov. The test will also evaluate
whether a third hidden layer might be of interest in favor of reducing neurons in the
prior two hidden layers. Hence, the number of layers will be L ∈ [3, 4] or [3, 5], i.e.
number of hidden layers will be [1, 2] or [1, 3].

The number of random searches from the different possible amount of hidden layers
will be proportional to the proportion of possible neuron combinations for that number
of hidden layers and the total number of possible combinations for all hidden layers
choices7. This with motivation to avoid that the random search only feed the model
selection algorithm with architectures with the same amount of layers.

Hidden neurons

There is no consensus regarding the optimal number of hidden neurons, and the number
of neurons will consequently be determined by the model selection algorithm choosing

4Will be an input regardless of the results in Pearson correlation test
5See Appendix B.1 for the frequency of each macro factor.
6Depends on the nature of the metric. See Appendix B.1 for the unit of each macro factor.
7Example: [1-2] hidden layers tested with 1-20 neurons in the first layer, 1-5 neurons in the second

layer. Possible combinations for one layer is 20, possible number of combinations for two layers =
5*20 = 100. One layer will be tested 20

120 , two layers will be tested 100
120 , of the total number of random

searches.

82

4.2. PHASE 1: NEURAL NETWORK

from number of hidden neurons from the random search method. The limits for the
random search algorithm will be determined through tests in the model selection data
set. According to the theory increasing the architecture with one layer should reduce
the number of neurons in the previous layer. Thus, depending on the results, the limits
of neurons for each layer will be set with conditions that depends on the number of
hidden layers.8 This also reduces the high number of possible combinations with three
layers that otherwise would increase the computational time for the MSA.9

Output

In order to minimize the total error there will be one architecture, estimating the
expected return, for each portfolio constituent. This will make the most accurate
prediction instead of the alternative creating one network with multiple outputs. Fur-
ther, since the learning task is a regression problem and more specifically a function
approximation/predicting problem there is no need of multiple outputs describing spe-
cific classes or clusters.

4.2.4 Preprocessing

The way the data is preprocessed is dependent of the choice of activation function
and specifically the range of what value the output of the activation function can
adopt. This holds especially in the case where a multilayer class of network is used.
Remember, the output of the general node in the arbitrary layer will subsequently
become the input to the next layer, therefore their limits should conform. However,
in order to not bias the gradients to any specific direction according to LeCun et al.
(1998), a mean of the inputs around zero is wanted. Thus, the range of normalization
is set to [−1, 1]. Every input times series xi will be processed according to

x′ = 2
x−minx

maxx −minx
− 1. (4.2.6)

This preprocessing procedure will be conducted both before the PCA to ensure that
the PCA is not skewed towards a variable with a unit that gives higher values than
the other, as well as after determined the principal components to ensure that the
information that is fed into the network is in [−1, 1]. The target data of the times series
will not be normalized to [−1, 1] and instead handled with an unlimited activation
function (identity function) in the output node.

One assumption of CAPM that aligns with our perspective of the capital market is
that an investor should get compensated by the exposure of risk of a specific asset, ra,
commonly mentioned as a risk premium, rp. This premium hence correspond to the
excess return over the riskfree rate, rf , defined as

8Example: the limit of neurons in the first layer could be set to 10 with condition that the
architecture consists of one hidden layer and 5 otherwise.

9Example: architectures with size up to 3-2-1 gives 6 potential 3-hidden layer-combinations, in-
stead reducing first layer and second layer to 2 and 1 respectively if a third layer is utilized gives 2
different combinations

83

CHAPTER 4. METHOD

rp = ra − rf (4.2.7)

where rf will be set to STIBOR3M. Consequently, this assumption implies that the
return is dependent of the riskfree return, which during the latest years has decreased
tremendously. To capture these levels the risk premium of each portfolio constituent,
rp,i will be used as inputs and desired outputs of the network instead of the actual
return. The returns that will be used as inputs will be pre-processed with the riskfree
rate before they are normalized an fed into the PCA. Enke and Thawornwong (2005)
did a similar thing, as they predicted the return of S&P500 less the riskfree rate. The
FX-rates will not be preprocessed according to (4.2.7) as CAPM is not valid for FX-
rates. The length of the STIBOR3M data series will consequently limit the possible
number of training examples from 1987-01-02 for the indices, but not for the FX-rates.

4.2.5 Postprocessing

As the desired outputs of the neural networks are processed by subtracting the riskfree
rate, the output of the neural network given an input vector has to be postprocessed
in order to get the expected return for the asset. As such, the estimated expected
return µ̂ for the asset is given by

µ̂ = ŷ + rf (4.2.8)

where ŷ is the output from the neural network and rf is the riskfree rate. Similarly, this
postprocessing will not be conducted for the FX-rates, since they are not preprocessed
with the riskfree rate.

4.2.6 Neurodynamics

One of the purposes of using ANN instead of other machine learning models is the
capability of capturing nonlinearities in the data. Further, the training, i.e. the
optimization to find the best model demands differentiability. Therefore the neurody-
namics in the hidden units will consist of a sigmoid type of activity function. Since the
output of the hidden nodes is the input to the next layer there is of interest to keep
the output in the range of [−1, 1], which according to the literature also decreases the
computational complexity of the network training. Hence, the activation function in
the hidden neurons from the general input, z, will be the TanH-function

ϕh(z) =
ez − e−z

ez + e−z
. (4.2.9)

As the nonlinearity is captured through the hidden layers there is no requirement of
using a non-linear activation function in the output node according to the studies of Qi
and Zhang (2001); Hann and Steurer (1996). Further, the Universal Approximation
Theorem also holds for a linear activation in the output node. From Section 4.2.4 there
was motivation to use the identity function as output activation function. With further
consideration that the learning task of the problem is regression and the network should

84

4.2. PHASE 1: NEURAL NETWORK

output an expected return of any level, the identity function without any saturation
as

ϕo(z) = z (4.2.10)

is motivated and will be used. The functions ϕh and ϕo are differentiable, which is
a requirement for using the backpropagation algorithm of the derivative of the error
function with regards to the weights.

4.2.7 Error function

Commonly in the field of machine learning two sources of errors are discussed, bias
and variance, described in Section 3.2.1. Ideally, one wish to reduce the bias while
at the same time decreasing the variance. A reduced bias, i.e. reduced systematic
error in the model, is of interest to avoid an underfitted network that has limited
predictive capabilities out of sample. In contrast, a reduced variance is desirable since
higher variance imply potential to represent the training data but to the expense of
increased risk of overfitting the data. Further, a higher variance of the estimated
return will make the optimization model reallocate the assets to a bigger magnitude.
Unfortunately reducing both simultaneously is impossible, and is also not the prime
objective. There is a trade-off between finding a good estimate, and the variance of
ditto. In this context these errors will prohibit the networks capability to generalize
beyond the in-sample data set. Due to the fact that the model will be optimized over
both the training and validation set, i.e. weights optimization and hyper-parameter
optimization, the same error function will be used for both the training and validation
set. This means that the optimization will step in the descent direction in the weight
space in regards to the error functions for both the training and validation set before it
starts to overfit, which is prevented by the early stopping technique, see Section 4.2.9.

We will perform extensive testing of the neural network performance in the model
selection data set in order to determine an appropriate error function. The most
common error function in the previous research of estimating the expected return is
the mean or sum of squared error (MSE/SSE)10. This will naturally serve as a starting
point of testing neural networks. However, in order to investigate how the dynamic
of the estimations changes in-sample when the exponent b of the error changes, we
will test different error exponents, and see how the dynamic (variance, bias) of the
estimations changes, see (4.2.11).

Jtraining(W) =
Nt∑

mt=1

(|ymt − ŷmt |)b, b > 0 (4.2.11)

Exponents lower as well as higher than the common SSE will be tested according to b ∈
{0.1, 0.5, 1, 2, 6, 26}. If any of the "extreme" exponents show promising characteristics,
further exponents might be tested.

10The MSE and the SSE will give the same solution as the objective function is only scaled by a
constant

85

CHAPTER 4. METHOD

One property of CAPM that is desired is its low variance, therefore a test to steer the
optimization towards CAPM to lower the hypothetical high variance of the estimations
will be conducted. This is also an action to prevent potential overfit of the model
selection set which is further discussed in section 4.2.9. As the neural network estimates
the return less the riskfree rate the model has to be to steered towards CAPM less the
riskfree rate.

Jtraining(W) =
Nt∑

mt=1

(|ymt − ŷmt|)b + λCAPM

Nt∑
mt=1

(CAPMmt − rf,mt − ŷmt)2 (4.2.12)

Analogous with the reason of not using CAPM as inputs to the FX-networks, described
in 4.2.3, penalizing the deviation from CAPM for these estimations when training and
selecting network would be inappropriate. Consequently, the error function in 4.2.12
is modified as

Jtraining(W) =
Nt∑

mt=1

(|ymt − ŷmt |)b + λRW

Nt∑
mt=1

(ŷmt)
2. (4.2.13)

The coeffiecients, λCAPM and λRW , i.e. the proportion of how much the error function
will penalize deviation from CAPM and FX respectively, will be tested with the values
λCAPM , λRW ∈ {0, 0.5, 1, 1.5, 24}. The objective is to find the coefficient that yields
an appropriate volatility in the model selection data set. The coefficients might be set
individually for each index depending on the dynamic of the estimations in the model
selection set.

The objective of these tests aligns with the common dilemma of bias and variance
discussed above, define an error function for each index where the estimations in model
selection set has a volatility less than 15% than the volatility of the actual returns, but
still has as low bias error as possible. This limit of volatility means that the estimations
given a 95 % confidence interval will roughly11 vary between the mean and ±2σ. This
level is considered as appropriate for the variation of the expected value estimations,
as well an appropriate level to limit the re-allocations of the portfolio optimization.

4.2.8 Training

Although the theory presented in Section 3.6 point out that online learning is better
than batch learning, the batch learning implementation by Matlab have been shown
(Demuth and Beale, 2002) to usually be more efficient12. The two arguments in the
theory is that online learning handle data redundancies efficiently, and do potentially
avoid local minimas. The first argument seems to be overcome by the Matlab imple-
mentation, ans the second argument is handled in our model by having several initial
conditions. As such, we will use batch learning gradient descent with adaptive learning

11Given a normal distribution, samples will vary between the mean and ±2σ given a 95 % confidence
interval

12The actual reason why is not documented by Matlab, and not further investigated by the authors

86

4.2. PHASE 1: NEURAL NETWORK

rate. As the learning rate will be adaptive, the initial choice of ditto is not crucial. As
such, it will be set to the standard in the Matlab Neural Network Toolbox, which is
0.01 (Demuth and Beale, 2002). The learning rate will be adaptive to the changes of
the error function. If the error function decreases, the learning rate will be increased
by a factor of 1.05 in order to keep speed up learning as the magnitude of the gradient
decreases. If the error function increases after one epoch, which means that the weight
step was too large, the weight update is discarded and the learning rate is decreased
with the factor 0.7. This choice stems from lack of consensus in the literature regarding
this parameter and the fact that these are the standard choices in the Matlab Neural
Network Toolbox (Demuth and Beale, 2002).

The weight optimization will be interrupted if any of the following conditions are
disrupted:

• The overfitting criterion is met (see Section 4.2.9)

• The length of the gradient is smaller than 10−35

• The number of epochs completed is larger than 1000 (Prechelt, 1998)

The weights will be initialized using the model of Nguyen and Widrow (1990) to
initialize neuron and bias weights, described in Section 3.6.6. The main rationale for
using this initialization model is that few neurons are wasted, since all the neurons are
in the input space, and that training works fast, since each area of the input space has
neurons. (Demuth and Beale, 2002)

Number of initial conditions

As the optimization problem for estimating the weights of the neural networks is non-
convex we will initialize the weights several times to enable converging to different local
minimums of the weight space. Optimally the number of inital conditions would be
very large to enhance the possibility of reaching global optima but with restriction of
computational time every set of hyper-parameters will be run 9 times. This is within
the interval suggested by Bengio (2012) (original suggestion 5-10 times re-initialized
initial conditions). The weight set with the lowest validation error for the 9 runs
with different initial conditions will be chosen. The ensemble averaging methodology
is considered inappropriate, since it is a try to create good solutions by averaging a
couple of bad solutions. Instead, we choose the one which is best according to the
validation set.

4.2.9 Overfitting prevention

On top of potentially regularizing the error function with the CAPM-error, early stop-
ping will be conducted to decrease the risk of overfitting. Early studies, including
Enke and Thawornwong (2005) have utilized the early stopping technique for prevent-
ing overfitting.

By conducting an initial test, we conclude that the error on training and validation set
relative to the number of epochs for this problem setting seem to follow the theoretical
appearance, i.e. when the validation error starts to increase it will not decrease again.

87

CHAPTER 4. METHOD

Hence, our starting point is to stop the training as soon as the validation error starts
to increase. However, to make sure that the validation set error does not start to
decrease again, the algorithm will be run for 6 more epochs after the validation error
has started to increase to make sure that it does not decrease again, which is in line with
Matlab Neural Network Toolbox recommendation. As such, the techniques proposed
by Prechelt (1998) will not be utilized.

4.3 Phase 2: Portfolio optimization

This section will describe the chosen portfolio optimization model, including external
preferences set by S&P. The portfolio optimization will be run on data starting from
2013-08-30.

4.3.1 Foreign exchange

As the returns for the indices used in this thesis will be in SEK, and include the impact
of FX-rates changes, the portfolio will be exposed to FX-risk. As such, it will not make
any sense to keep FX-rates as possible investments as these would only increase the
FX exposure. Also, additional assets would have to be included in the portfolio as
investments of the invested foreign currency. As such the portfolio constituents will
be reduced from the 15 different neural networks in phase 1, to 12 different portfolio
constituents in phase 2. The FX-rate estimations will only be evaluated as a part of
the first phase.

4.3.2 External specifications

The following bullets summarizes the properties that the asset allocation generated by
the portfolio optimization model should comply with:

• Swedish investor - i.e. the return in SEK is of interest

• No shorting - i.e. no negative holdings of assets

• No borrowing - i.e. no negative holding of cash

• Differentiated portfolio - i.e. holding a broad range of the portfolio constituents
at every time step

• Moderate re-allocations - portfolio turnover13 of maximum 0.10 at each rebal-
ancing and 0.40 per annum

4.3.3 Portfolio optimization model

The portfolio optimization model will be a two-stage stochastic programming model
without recourse decisions based on the sum of the utility of the wealth in a set of
S scenarios. The advantage versus the widely used mean variance model is that the
utility function of the investor can be set to something else than the quadratic utility

13Sum of the absolute buy- and sell decisions divided by 2. If the entire portfolio is re-allocated,
the portfolio turnover is 1

88

4.3. PHASE 2: PORTFOLIO OPTIMIZATION

function, as well as, handle market imperfections such as transaction costs. Also, the
stochastic programming model allows for other distribution assumptions of the asset
returns than the normal distribution. The mean variance model is sensitive to the
fluctuations of the estimated expected return, and tends to hold only a few of the
portfolio constituents (Black and Litterman, 1992). The portfolio optimization will
be run once every quarter and will consequently cause re-allocations quarterly14, in
accordance with S&P advising intervals.

The parameters of the portfolio optimization problem is summarized as follows:

Parameters

I Number of assets
S Number of Monte Carlo simulated scenarios
i ∈ {1, . . . , I} Number i of the asset xi in the portfolio universe
s ∈
{1, . . . , S} Number s of the Monte Carlo generated scenarios

∆t Monte Carlo simulation time period
xiniti Initial holding in asset i
r

(s)
i

Return for asset i in scenario s in SEK
cinit Initial cash
rf Return for the riskfree asset in SEK
ps Probability for scenario s occuring
γ Risk aversion parameter
τ Transaction cost

The variables of the optimization problem is buy and sell decisions for each asset which
will be denoted:

Variables

xbuyi Buy decision for asset i
xselli Sell decision for asset i

The objective function of the portfolio optimization will be based on the sample average
approximation of the wealth in a set of scenarios. The scenarios will be generated by
Monte Carlo simulating asset returns using a copula function. The wealth in each
scenario s will be the sum of the value of each asset i, xholdingi er

(s)
i plus the capitalized

cash cerf∆t (equivalently the riskfree asset).
14Will be approximated with 12 weeks as the data is sampled on weekly frequency

89

CHAPTER 4. METHOD

Objective function

max z = max
S∑
s=1

psU(
I∑
i=1

xholdingi er
(s)
i + cerf∆t)

U(W) =

{
ln(W) for γ = 0
W γ

γ
for γ ≤ 1, γ 6= 0

.

(4.3.1)

A set of constraints will be formulated, and is presented below:

Constraints

New holding: xholdingi = xiniti + xbuyi − xselli , i = 1, . . . , I (4.3.2)

No arbitrage: xbuyi , xselli ≥ 0, i = 1, . . . , I (4.3.3)

No shorting: xholdingi ≥ 0, i = 1, . . . , I (4.3.4)

New cash: c = cinit +
I∑
i=1

xselli −
I∑
i=1

xbuyi − τ
I∑
i=1

(xbuyi + xselli) (4.3.5)

No borrow-
ing:

c ≥ 0 (4.3.6)

When the portfolio optimization is run, the relative weights in each holding is computed
as

wi =
xholdingi∑I

k=1 x
holding
k + c

(4.3.7)

and the relative weight in the riskfree asset is determined by

wc =
c∑I

k=1 x
holding
k + c

. (4.3.8)

4.3.4 Scenario generation

The scenarios will be generated using a copula function and univariate distributions
for each asset. The assumption will be made that the correlation is constant, and

90

4.3. PHASE 2: PORTFOLIO OPTIMIZATION

consequently the copula correlation P will be estimated using maximum likelihood
estimation in the model selection set. The copula function, out of gaussian and stu-
dent’s t, that yields the highest log-likelihood value will be chosen to estimate the
copula function.

As financial times series do show heavy tails, but have an aggregational gaussanity
on longer time periods, it is not clear which of the processes in Appendix D that
suits the data best. As the simulation period will be a quarter, the data will most
probably show aggregational gaussanity, but to what degree is unclear. Also, because
of the fact that volatility clustering exists, we will use the GARCH(1,1) model for
estimating the volatility. Therefore, the Geometric Brownian Motion, a student’s t
process and the GARCH-Poisson process will be tested on historic data in the model
selection data set. Their suitability to describe the distribution of the data will be
compared through QQ-plots (Quantile-Quantile plots). In the QQ-plot, the quantiles
of a sample that is transformed via the inversion principle is scattered against the
theoretical standard normal quantiles. If the scatter pattern approximately forms a
straight line, the distribution assumption is approximately correct. The QQ-plots
will be used to evaluate several distributions by visually inspecting the QQ-plots, and
the distribution that generates the most linear relationship will be chosen. If several
QQ-plots are similar, the process with the fewest parameters is chosen.

For the GBM, the expected value of the return µt will be estimated using the neural
networks, and the volatility σt will be estimated using GARCH(1,1), where the pa-
rameters in GARCH(1,1) will be estimated using MLE. These methods will be used
likewise to determine the student’s t process, its degrees of freedom, v, though will be
estimated using MLE. For the GARCH-Poisson process, µt will likeweise be the output
of the neural networks, the rest of the parameters will be estimated through MLE. See
Appendix D for detailed explanations of the respective univariate distributions.

Once the most appropriate univariate distributions are determined, the scenarios will
be generated using a single step-ahead Monte Carlo simulation with the time step ∆t
corresponding to a quarter, i.e. ∆t = 12

52
based on our approximation of a quarter.

By assuming that the distributions used to generate scenarios holds approximately,
the probability for each scenario to occur is the same, i.e. the probability ps = 1

S
,

see Section 3.7.3. The number of scenarios to be generated will be determined based
on the computational time, as it is a trade-off between a more complete description
of the possible outcomes and the computational time. The more scenarios that are
generated, the less risk will be invoked by the portfolio optimization. But since a more
complete description of possible outcomes is desired, we will choose the number of
scenarios S to be as many as possible while still keeping a reasonable computational
time. This is based on the decreasing marginal utility of wealth when γ < 1, i.e.

∂U(W)

∂W
= γ

W γ−1

γ
= W γ−1 > 0, γ < 1, γ 6= 0 (4.3.9)

∂2U(W)

∂W 2
= (γ − 1)W γ−1 < 0, γ < 1, γ 6= 0 (4.3.10)

91

CHAPTER 4. METHOD

and the same holds for γ = 0.

In order to be able to reduce the variance of the generated scenarios, the variance
reduction technique Latin Hypercube sampling will be used (Shapiro et al., 2009).
This technique divides the [0, 1] in S equally sized intervals, and draws one uniformly
distributed random variate at each interval. These random variates will then be used
to create random variates from any distribution using the inversion principle. As such,
Latin Hypercube guarantees to draw random variates more evenly spread out, in every
interval, over the probability space.

4.3.5 Estimating the portfolio optimization parameters

In order to optimize the portfolio, a couple of parameters that are not already explained
have to be estimated, namely rf , τ and γ.

As the optimization faces a Swedish investor, the riskfree rate rf,t at time step t will
be estimated with STIBOR3M. As STIBOR3M is quoted as a simple annualized rate
with 3 months maturity, the rate is converted to a continuous rate according to

rf,t = ln
(
(1 +

1

4
rSTIBOR3M,t)

4
)

(4.3.11)

which holds approximately disregarding the fact that the number of days differs be-
tween months. Differences in the number of days in a month will have a very small
impact and thus neglected.

We will assume that the trading is done in such way that the model buy at sell rates
and sell at buy rates at the stock close when the portfolio optimization is run. As
such, the transaction cost, τ , can be determined by calculating the historic spread
between buy and sell rates. According to S&P, fund trading often costs 500-1 000
SEK per order. However, the fix cost will be neglected, since the portfolio will be
optimized using a relative wealth. S&P also claim that ETF and equity trading cost
3-5 bps15 of order volume. As the fix costs were neglected, the upper limit of the
interval, i.e. 0.0005, is assumed to approximate the transaction costs for all the assets
in the optimization phase.

The risk aversion parameter γ will determine the utility function U(W) and will control
how much risk that will be taken by the portfolio optimization. In practice, every
investor have a different U(W), and S&P determines this by conducting a survey
where the customer have to take stand to a number of financial options built on
the methodology in Hanna et al. (2001). Based on the answers, the customer is
assigned one of seven risk levels, where the customer has a power-utility function
with γ ∈ {−0.50,−1.46,−2.99,−5.29,−7.70,−11.20,−27}. Consequently, we will run
seven different portfolios in phase 2, one for every risk level.

151 bps = 0.0001

92

4.4. EVALUATION

4.3.6 Solving the portfolio optimization problem

As previously shown in (4.3.9) and (4.3.10), the utility function U(W) has a strictly
positive first derivative and a strictly negative second derivative which means that
the function is concave. As the objective function (4.3.1) is a sum of utility functions
U(W) multiplied with a constant ps, the objective function is also concave. All of
the constraints to the optimization problem are linear, which means that they form
a convex set. In conclusion, this means that the optimization problem is convex
(Lundgren et al., 2008), and as such a local maximum of the deterministic equivalent
to the stochastic programming problem is the global maximum of the problem.

As the objective function is non-linear, an appropriate method has to be used to solve
the optimization problem. A primal-dual inner point solver will be used in Matlab,
which is explained by Alizadeh et al. (1998).

4.4 Evaluation

The evaluation of the model will determine whether the objective of this thesis is
fulfilled or not, which underpin its importance. Both phases will be evaluated on
the test set simultaneously after both phases are done. This is important to not
enable any modification of the portfolio optimization model according to the evaluated
characteristics of the estimated return. As such, the evaluation will indicate the true
out-of-sample performance.

4.4.1 Phase 1

The evaluation of the first phase will consist of three steps: First, we will create
benchmarks, as it is of interest to evaluate whether our model is better than other
existing models. Secondly, performance metrics are calculated. The last step is to
conduct a statistical test of the significance levels of possible improved estimation
accuracy in our model compared to the benchmarks. This phase will be evaluated
using data on a weekly frequency to get a decent number of test data points.

The benchmarks of this phase have been set with two objectives. First, evaluate our
model with comparison to the performance in the literature. Hence the first benchmark
that will be used is linear regression which is defined as

µ̂
(q)
b1 = α0 + α1x1i + α2x2i + . . .+ αpxpi. (4.4.1)

The optimal coefficients α∗ is fitted with ordinary least squares (OLS), a more detailed
explanation of this calculation is found in Section 3.2.2. The vector, x will vary for
each portfolio constituent, and be determined by backward stepwise regression for
dimensionality reduction, which is the same technique Enke and Thawornwong (2005)
use for their linear regression benchmark. In a nutshell, the technique starts with
regression of all of the inputs which were fed into the PCA. The coefficient which
has the lowest t-static will be removed, and a new regression will be fitted. These
steps will be repeated until all of the inputs x are statistically significant, i.e. has
|t− static| > 1.96, which corresponds to a 95 % confidence interval for the variable.

93

CHAPTER 4. METHOD

Second, to evaluate the accuracy of the model, in relation to economic theory, the
CAPM model will be constructed as benchmark. The model assumed to be the most
relevant determining the expected return, defined as

µ̂
(q)
b2 = rf + β(rM − rf) (4.4.2)

where β is calculated through regression, rM , i.e. return of the market portfolio, is set
to the arithmetic historical mean of MSCI World, and rf , i.e. risk-free return, is set
to STIBOR3M. Using CAPM as a benchmark is relevant due to its origin from EMH.
As CAPM will be used as input in the training of the neural networks, the first two
year’s CAPM level will be estimated by future estimates of β and rM . This is to not
loose any data for training, and as it only affects the training of the model, it will not
bias the evaluation of the model.

Both the OLS and CAPM will be estimated using all available data, instead of using
the rolling window technique.

The main evaluation metric to measure the performance of the neural networks vs the
benchmark, will be MAE defined as

MAE =
1

T

T∑
i1

|yt − ŷt|. (4.4.3)

The MSE used as objective function is neglected to the favor of MAE since in this
context we do not need the properties of having a function with continuous derivative
and that treats errors differently depending on their magnitude, the absolute deviation
is of highest interest.

The SIGN will also be used to tell the probability of estimating in the right direction
and is defined as

SIGN =
1

T

T∑
i1

zt, where zt =

{
1 if ytŷt > 0

0 otherwise
. (4.4.4)

Further, this is a metric that can foster discussion of whether EMH holds or not.
The EMH implies that creating a model that can estimate the expected return with
a SIGN higher than 50 % is not possible. To draw any conclusion whether the neural
networks can estimate the expected return better than the benchmarks the Diebold and
Mariano (1995) test will be conducted using a one-sided alternative hypothesis. This
test will be conducted for every portfolio constituent to evaluate whether the findings
are consistent over different assets. The Diebold and Mariano (1995) test requires less
assumptions than some of the other similar tests found in previous research, which
increases the validity of possible findings. The significance level that the null hypothesis
can be rejected on for each of the return estimations will be studied as well. See Section
3.8.1 for a detailed description of the test.

94

4.4. EVALUATION

4.4.2 Phase 2

The second evaluation phase will comprise the project at large and will be evaluated
from two perspectives. First, as with the previous phase, relevant metrics will be
used to compare different benchmarks where in this case the benchmarks consists of
different portfolio strategies. Secondly, our portfolio optimization will be used with
µ̂

(q)
b2 since there is not only of interest to evaluate the accuracy of our estimation of

the expected value, but also how well it fits our portfolio optimization model. The
most accurate estimation does not necessarily imply the best return in the portfolio
optimization phase. This phase will be evaluated using weekly portfolio returns.

The first metric that will be used to evaluate the total portfolio performance will be
Jensen’s alpha, αp which gives us the excess return over the market portfolio. Also, the
regression will give us the systematic risk βP . The Jensen’s alpha will be calculated
through linear regression fitted with least squares, and is defined as

rP,t − rf,t = αP + βP (rM,t − rf,t) (4.4.5)

where the return on the market portfolio rM,t at time t will be estimated with the MSCI
World Index, which is one of the portfolio constituents. As previously mentioned, rf,t
will be estimated with STIBOR3M. The portfolio return rP,t will be calculated ac-
cording to the asset aggregation formula found in Section 3.3 as rP,t = ln(

∑N
i=1wie

ri,t)
where wi is the relative weight of asset i, and ri,t is the logarithmic return of asset i.

The statistical significance of the excess return, i.e. the alpha of the portfolio, will
be validated through a Student’s t-test with the null-hypothesis H0 : αp = 0 against
H1 : αp > 0.

As risk adjusted metric the Sharpe ratio, Sr, will be used based on the assumption
that the portfolio is the total holding and we are exposed to both systematic and
unsystematic risk, something that the Treynor index does not take into account. The
Sharpe ratio is defined as

Sr =
rP − rf
σP

. (4.4.6)

where rP and rfwill be the annualized mean returns of the portfolio and riskfree rate
respectively, and σP will be the sample standard deviation of the portfolio returns.

In addition the the portfolios generated with µ̂(q)
b2 , a benchmark portfolio with equally

weighted assets will be constructed. The equally weighted portfolio will consist of the
same assets as the optimized portfolio, and be equally weighted at the initialization,
but not rebalanced during the course of time, i.e. buy-and-hold. Also, a mean vari-
ance portfolio with quarterly weight re-allocations will be constructed as benchmark
according to the model

max
1Tw+wrf=1

w,wrf≥0

µTw +
γMV − 1

2
wTCw + wrf rf (4.4.7)

95

CHAPTER 4. METHOD

where µ will be estimated with µ̂(q)
b2 , and C will be estimated with the sample co-

variance. The riskfree rate rf will be estimated with STIBOR3M. To make a fair
comparison of the stochastic programming optimized portfolio, the same constraints
will be invoked to the mean variance portfolio, i.e. no shorting and no borrowing, as
is defined in (4.4.7). The risk aversion parameter γMV will be set in accordance to the
risk aversion level in the stochastic programming model, and will as such yield seven
portfolios. The mean variance portfolio will be optimized in Matlab.

4.4.3 Summary of evaluation

In Table 4.4.1 there is a summary of the evaluation metrics, tests and benchmarks to
be used in the evaluation of the model in this thesis.

Table 4.4.1: Summary table of the evaluations

Metrics Statistical tests Benchmarks

Phase 1 MAE Diebold-Mariano OLS
SIGN CAPM

Phase 2
αP t-test of αP SP with µ̂(q)

b2

Sr Equally weighted portfolio
Mean variance portfolio

96

Chapter 5

Results & Analyses

This chapter presents the results from the first and second phase of the thesis respec-
tively. Each of the phases are evaluated and analyzed in relation to the objective of
the thesis.

5.1 Phase 1: Neural Network

The first step of phase 1 was to perform extensive testing on different error functions
and hyper-parameters. With these results we got an understanding of the dynamics
of the model to determine an error function and set the limits for the random search.
Thus, the results from these tests will be presented as a rationale for determining the
error function and the limits for the random search. Afterwards, the result of the
predictions in the test set will be provided and analyzed.

To keep the readability of the report, based on the numerous predicted time series,
we will mainly present in-depth analysis from the neural network designed for the
swedish equity index for large cap OMXS30. This index’s neural network will act as
an example for logical reasoning that apply to the other time series as well. The actual
results for all of the time series are available in the Appendices.

5.1.1 Error function

Different error functions will penalize the error between the outcome of the neural
network and the targeted output differently, and thus the statistical properties of the
predictions will vary according to this choice. In the following test an understanding of
how different error functions affect the prediction was gathered to further motivate this
decision. As described in Section 4.2.7 the smallest possible error of the predictions for
a specific time series with a variance that is below the predefined level is of interest.

Exponents

The behaviour of the predictions with an error function defined as the sum of the
errors with different exponents b ∈ {0.1, 0.5, 1, 2, 6, 26} have been evaluated in the
MSS. According to the mathematical theory an increased exponent penalizes greater

97

CHAPTER 5. RESULTS & ANALYSES

errors at the cost of ignoring smaller errors, which can be seen in the histograms in
Appendix E.1. This behaviour might be seen as desirable due to its great fit, but a
great fit in the MSS might imply an overfitted network with reduced generalization
ability. Further, the empirical results indicate that minimizing greater errors increases
the variance of the predictions.

An exponent below one has shown to penalize the errors in the opposite way, which
aligns with the intuition. The hypothesis was to approach the mean return during
the period while also reducing the variance but the test shows that the most common
outcomes of the target returns are captured instead. This could potentially be prob-
lematic when the most common outcomes deviate from the mean, which is exemplified
in Figure 5.1.1.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

140
Histogram of actual returns

No. outcomes

Mean actual return

Mean return with exp. 0.1

Figure 5.1.1: Histogram of the actual returns for OMX Index in the MSS

None of the exponents smaller than one or greater than two have shown desirable
properties. The estimations for b ∈ {1, 2} show the most promising behaviour, and
together with previous researchers’ choice of objective function, b = 2 is utilized in
our model. What further incentivize this choice is that b = 2 grants the network with
an error function, unlike b = 1, that is a continuous, differentiable function, useful for
gradient descent optimization. Also, it is an unbiased estimator of the expected value,
see Section 3.2.1.

Figure 5.1.2 presents the estimations in the MSS against the targeted output using
b = 2 for OMX. The volatility in the MSS is approximately 6% and the mean return
is 4%. This means that with a significance level of 5 % the estimations of the return is
approximately1 µ̂(q) ∈ [−10%, 16%]. This would likely have a bad performance in the
test set, as well as causing vast re-allocations in the portfolio optimization phase. Thus

1This would hold if the predictions were normally distributed with expected value 4 % and standard
deviation 6 %. Whether or not that is true is not important, this is just to approximate a confidence
interval for the estimations.

98

5.1. PHASE 1: NEURAL NETWORK

variance reduction via CAPM regularization was decided to be used with coefficient
estimated according to the test described in the section below.

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012

Time sampled in weekly frequency

-0.6

-0.4

-0.2

0

0.2

0.4
Q

u
a

rt
e

rl
y
 r

e
tu

rn

 Training Std: 0.058759 & Training Mean: 0.044282

Target Std: 0.11865 & Target Mean: 0.027988

Prediction

Target

Figure 5.1.2: Plot of estimations in the MSS with SSE error function

CAPM regularization

In the following test, with the modified error functions from (4.2.12) and (4.2.13),
we evaluated how the dynamics of the predictions varied for different λ in the MSS.
The regularization coefficients were set to λCAPM , λRW ∈ {0, 0.5, 1, 1.5, 2, 4} and the
resulting plots and histograms for the OMX CAPM regularization test can be found
in Appendix E.2. First, the actual volatility, σActual of the target data was determined.
Second, the volatility of the estimates, σNN given the different coefficients were put in
relation to the targeted volatility, σTarget, defined as, σTarget = 0.15σActual. Due to the
fact that the volatility of CAPM, σCAPM , was as low as 0.3% for OMX the outcome of
this test was as expected; an increased value of λCAPM resulted in the desired property
of reduced volatility.

The decision model to determine λCAPM or λRW is exemplified with the OMX Index.
Through observation of the characteristics provided in Table 5.1.1, which represent
the results from the analysis, the coefficient could be set.

Table 5.1.1: Analysis of the volatility for different λCAPM for the error function of the
neural network designed to the OMX index

σActual σTarget σCAPM

0.119 0.018 0.003

λCAPM σNN Below σTarget?

0 0.036 No
0.5 0.026 No
1 0.014 Yes
1.5 0.013 Yes
2 0.012 Yes
4 0.011 Yes

99

CHAPTER 5. RESULTS & ANALYSES

To sum up; the error function for the neural network representing OMX, withN = 1337
available training examples, was set to

JOMX(W) =
1337∑
mt=1

(ymt − ŷmt)2 + 1
1337∑
mt=1

(µ̂CAPM,mt − rf,mt − ŷmt)2 (5.1.1)

5.1.2 Hyper-parameters

The hyper-parameters of the final network have been chosen through optimization
with parameters chosen from the random search method. But before, limits for the
random search method was determined.

Ideally, the number of random searches should be as high as possible, as a higher
number increases the chance of finding a good solution. But computational time is a
limiting factor. Too many random searches would be very time consuming. Based on
testing of computational time, the number of random searches was set to 40, which
can be put in contrast to the number of possible grid searches of 560 for the choices
of limits that have been done.

How the random searches should be distributed between the different hyper-parameters
and the sample space for each of them is not obvious from the literature. This leaves
the designer to understand the variation in the dynamic of the networks, for each
choice of hyper-parameter. Thus, tests have been run to evaluate what choices of
hyper-parameters that might be the optimal choices for the final network, and the
limits have been set accordingly. The total time for optimizing the 15 neural networks
was 9h:33min2.

Explanation degree

Different number of inputs to the network were evaluated i.e. different degrees of
explanation, f , of the PCA were tested, remember that the inputs to the network is the
principal components of the PCA. According to the theory, the number of inputs affects
the performance of the network. Consequently, a test of how many eigenvectors, from
the PCA, that is required to achieve different degrees of explanation was performed.
The test was performed on the OMX Index. According to Figure 5.1.3 an increased f
for high values increases the number of eigenvectors more compared to an increase in
the lower levels. For example an increase of f from 0.90 to 0.95 increases the number
of inputs with 4 while increasing from 0.995 to 1 increases the inputs with 7. To allow
the model selection algorithm to test different number of relevant inputs, the interval
of f to utilize random search over varied from values between 0.9 to 1. Based on this
test there will be a higher frequency of possible f closer to 1, hence the possible f is
left to be randomly searched in the set of f ∈ {0.90, 0.95, 0.975, 0.995, 1}.

2Computational time of the model is dependant on what computer that is used and will vary
according to its processor power.

100

5.1. PHASE 1: NEURAL NETWORK

Degrees of freedom: 0.90, 0.95, 0.975, 0.995, 1

Against inputs

11 15 19 28 35

No. of inputs

0

0.
2

0.
4

0.
6

0.
8

1

1.
2

D
e

g
re

e
s
 o

f
fr

e
e

d
o

m

Figure 5.1.3: The cumulative degrees of explanation for different number of eigenvec-
tors

To potentially further reduce this hyper-parameter a test of which f that performs
the lowest MSE in the validation set for different architectures was performed. First,
this test was done on the OMX Index. The left hand side of Figure 5.1.4 shows that
the lower values of the set of f were irrelevant. To ensure the strength of the test
further analysis was conducted. According to the theory the size of the architecture
can affect the number of inputs since the number of free parameters should not exceed
a specific upper limit. But, no relations that proves this theory were found. Another
theory claims that the number of free parameters times 10 should not exceed the
training data, hence indices with less available data should limit the number of inputs.
Consequently, the same test was performed on a shorter index, namely NOMXCRTR3.
The results are provided in Figure 5.1.4.

Figure 5.1.4: Relation between the degrees of freedom and size of training plus vali-
dation set

3This index was only used for this test

101

CHAPTER 5. RESULTS & ANALYSES

Whether the theory holds or not, lower f might be of interest and the set of f will
remain the same as previous and set according to Table 5.1.2.

Table 5.1.2: Search space for the random search for f

Hyper-parameter Possible values

Explanation degree f f ∈ R : f ∈ {0.90, 0.95, 0.975, 0.995, 1}

Number of hidden layers and neurons

To determine the limits for the random search a test was conducted. This was designed
to find the best architecture from multiple randomized architectures of different sizes,
layers as well as neurons. To simulate the test set performance as good as possible
the performance metric for each architecture was the MSE from the validation set.
All architectures had the same initial conditions, number of cross validations and data
partitioning to avoid random results. The tests were evaluated on a longer and a
shorter time series to test whether the theory that claims that with restricted amount
of data a smaller network should be used. No obvious relationships were found that
supports the theory though, and therefore the limits were set to be consistent for
each time series. The choice of limits for the neurons in every hidden layer was based
on the architectures of the best networks in the test to minimize the risk that the
random search misses relevant architectures. The limits for layers and hidden neurons
is summarized in 5.1.3.

Table 5.1.3: Search space for the number of hidden layers, and the number of neurons
in each hidden layer for the random search

Hyper-parameter Possible values

No. hidden layers Lh Lh ∈ Z : L ∈ [1, 3]

No. neurons if one hidden layer M2 M2 ∈ Z : M2 ∈ [1, 16]

No. neurons if two hidden layers M2, M3 M2, M3 ∈ Z : M2 ∈ [1, 12], M3 ∈ [1, 5]

No. neurons if three hidden layers M2, M3, M4 M2, M3, M4 ∈ Z : M2 ∈ [1, 9], M3 ∈ [1, 4], M4 = 1

5.1.3 Results from the optimized neural networks

The design of the resulting artificial neural networks determined by the MSA and its
performance will be presented in this section. The generated ANNs varied vastly in
terms of hyper-parameters for each time series, see Appendix F.

The number of potential inputs for OMX Index was 32, and the relevance analysis
reduced it to 19. Further, the random search ended up with an explanation degree of
1.000 leading to the use of all 19 eigenvectors from the PCA. Together with CAPM

102

5.1. PHASE 1: NEURAL NETWORK

a total of 20 inputs were fed to the network. The architecture chosen consisted of 1
hidden layer with 5 hidden neurons. The architecture is summarized in Table 5.1.4.

Table 5.1.4: Results from the hyper-parameter optimization

Hyper-parameter Optimal values

Explanation degree f 1.000
No. inputs M1 20
No. hidden layers Lh 1
No. neurons first hidden layer M2 5
No. outputs M3 1

Resulting architecture (20-5-1)

The volatility of the estimation in the MSS was 0.014 (CAPM 0.003) and the volatility
in the test set was 0.0045 (CAPM 0.0003) compared to the actual volatility of 0.119
and 0.06 respectively. The mean of the estimations in the MSS was 0.023 (CAPM
0.020) compared to the actual mean during the same period of 0.028. The mean of
the estimations in the test set was 0.032 (CAPM 0.016) compared to the actual mean
during the same period of 0.019. The results are summarized in Table 5.1.5.

Table 5.1.5: Summary of results from the OMX-network vs. CAPM and actual returns

MSS Test Set

Parameter ANN CAPM Actual ANN CAPM Actual

σ 0.014 0.003 0.119 0.005 0.000 0.060
µ̄ 0.023 0.020 0.028 0.032 0.016 0.019

The estimations are seemingly closer to the mean both in the MSS but not in the test
set, and for both cases to a higher volatility. In Figure 5.1.5 the predictions of the
ANN is plotted compared with the actual returns and the CAPM predictions. Plots
for the estimations for every index in the test set can be found in Appendix G.

103

CHAPTER 5. RESULTS & ANALYSES

2014 2015 2016 2017
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Predictions ANN vs Actual

NN-Estimation

Actual

2014 2015 2016 2017
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Predictions ANN vs Predictions CAPM

NN-Estimation

CAPM

Figure 5.1.5: Left: Test set predictions of ANN vs actual returns. Right: Test set
predictions of ANN vs CAPM

5.1.4 Evaluation

To evaluate whether our neural network model is suitable for estimating the expected
return, the performance in the test set is compared to other available models, namely
CAPM for the indices and RW for the FX-rates. Some of the existing research papers
in this field fail to compare the results to relevant methods used for estimating the
expected return in finance, instead linear regression (OLS) is a common benchmark
to conclude if a model is successful or not.

Benchmarks

In Table 5.1.6 a comparison of the MAE and SIGN metrics for the models respec-
tively can be found. For the fifteen time series, the ANN produced lower MAE than
CAPM/RW only for four time series, the two equity indices OMX and MXWO, the
interest rate index RXBO and the FX spot rate of JPY/SEK. For most of the other
indices, the results are similar or slightly worse than those of CAPM/RW. However,
there seems to be no evidence that our model could be better than CAPM/RW with
perspective of MAE. The SIGN metric. i.e. to what rate the prediction is in the
correct direction, is for the indices dominated by CAPM. Though, the importance of
this metric is questioned.

Comparing the results to OLS, twelve out of the fifteen time series were predicted with
a lower MAE by the ANN. This indicates that our ANN model potentially is better
than an OLS model. In Section 3.9 there is a summary of the paper of Enke and
Thawornwong (2005). The authors observe that they produce a lower RMSE than the
OLS and a SIGN of 0.68, and argue that their results are successful without inves-
tigating the statistical significance of their findings, nor compare it with econometric

104

5.1. PHASE 1: NEURAL NETWORK

models like CAPM. It is hard to tell whether their results generalize to other indices
than S&P500 as the study only considers that one index. However, considering the
comparable equity indices with perspective of MAE in our case and RMSE in their as
well as the level of SIGN the results seem to conform.

The results of this study are hard to compare to Qi and Zhang (2001) estimation of
S&P500 as they only benchmarks against AR and RW models. However, they only
slightly beat the RW model, and as our results for the equity indices slightly beat
those of CAPM, the results are considered to be at least in line with Qi and Zhang
(2001).

Considering the FX-rates, our results for the MAE is quite similar to the benchmarks,
i.e. the RW and the OLS, which is a worse result than those of Hann and Steurer
(1996). This might be explained by different methodologies determining inputs to the
ANN, they utilized an econometric monetary model not comprised by our model.

Table 5.1.6: Out-of-sample performance metrics for the ANN, CAPM and OLS for
every index. The lowest MAE and the highest SIGN for every index respectively is
marked with bold font. At the bottom, the number of times ANN was better than
CAPM/RW and OLS respectively is presented.

MAE (*100) SIGN

Index ANN CAPM OLS ANN CAPM OLS

OMX 4.605 4.732 6.480 0.719 0.719 0.354
MXWO 4.686 4.781 8.300 0.776 0.776 0.250
RXBO 0.92 1.001 3.412 0.630 0.641 0.255
RXRE 1.674 1.654 8.987 0.542 0.490 0.339
RXVX 0.132 0.051 0.163 0.766 0.969 0.521
HE00 1.856 1.795 4.829 0.786 0.786 0.458
LEGATRUU 3.468 3.118 5.170 0.245 0.641 0.464
JGENBDUU 4.227 4.127 6.829 0.630 0.677 0.359
MXWO0RE 5.309 5.254 8.666 0.635 0.630 0.396
BCOMTR 5.293 5.075 7.106 0.453 0.453 0.51
HFRXM 5.112 4.568 8.200 0.417 0.583 0.453
HFRXAR 4.272 3.749 2.69 0.406 0.693 0.714
FX-rates RW RW
JPYSEK 3.969 3.984 4.402 0.568 0.000 0.411
EURSEK 1.938 1.67 1.886 0.375 0.000 0.432
USDSEK 4.240 3.738 4.191 0.417 0.000 0.359
ANN vs. - 4 12 - 4 9

Statistical test

Also, the Diebold and Mariano (1995) test was conducted, and the results are presented
in Table 5.1.7. The use of this model proves to be relevant in this context, since the
prediction errors seem to be non-gaussian and at times with non-zero mean. None
of the time series where the ANNs had a lower MAE than CAPM had statistically

105

CHAPTER 5. RESULTS & ANALYSES

significant lower prediction errors. As such, the result can be based on merely luck.
Looking at the fifteen time series, the P-value has an obvious randomness. What can
also be noted is that the P-value for none of the indices is above 0.950, which means
that the null hypothesis, given a reformulated alternative hypothesis that the CAPM
estimates produce significantly better estimates than the ANNs, can never be rejected.
Conclusively, a claim that the either the ANN model or CAPM/RW would provide
better estimations than the other can not be drawn.

Looking at the results vs. OLS, two of the time series is shown to be statistically
significant better than the OLS, namely the RXBO Index4 and the RXRE Index5.
However, for the other time series (where ANN is better than OLS) it is impossible to
draw any consistent statistically significant conclusions whether the ANN predictions
are better or not. Ideally to validate with consistency whether the ANN outperforms
OLS one would need longer time series for these tests than those considered in this
thesis, as to have sufficient amount of training data, i.e. a longer test data set than
192 data points. To conclude statistical significance with a limited number of data
points is nearly impossible. Whether it is relevant or not to show stochastic dominance
against an OLS model in estimating the expected return in finance is another matter,
since no evidence is provided in the finance literature for such models.

5.1.5 Sensitivity analysis

A sensitivity analysis was conducted with the aim to unravel the impact of chang-
ing the error function (5.1.1). This was considered the most important parameter,
and a sensitivity analysis of the other parameters in the model was consequently not
conducted. Testing other inputs would be of interest though, but the scope of such
analysis exceeds the scope of the sensitivity analysis.

Using the SSE error function

The ANN model was run with the SSE error function, which basically means that
the CAPM regularization coefficients were decreased to zero, i.e. λCAPM = 0. The
results were less promising. Only 1 out of the 15 estimations had a lower MAE than
CAPM. Although, the SSE error function predictions did beat the OLS predictions
in 9 out of the 15 time series, it is hard to evaluate whether ANNs with this error
function is better than the models from the other studies due to the low number of
indices in those studies. However, this error function seem to impair the results due
to lack of generalization ability and the hypothesis made in Section 5.1.1 that a SSE
error function overfits the training data seems to hold. The results from this test is
summarized as:

• 1 out of the 15 ANNs had lower MAE than CAPM/RW

• 9 out of the 15 ANNs had lower MAE than OLS
4OMRX Total Bond Index, an interest rate index
5OMRX Real Return Index, an inflation index

106

5.1. PHASE 1: NEURAL NETWORK

Table 5.1.7: Diebold-Mariano test for forecast error (MSE) unequality. ANN estima-
tions tested versus CAPM and OLS estimations respectively. If the test static had a
P-value < 0.05 the null hypothesis of estimation error equality was rejected, and the
ANN estimation was concluded to provide a statistically significant better estimation.

vs CAPM vs OLS

Index H0 rejected? P-Value H0 rejected? P-Value

OMX no 0.469 no 0.307
MXWO no 0.364 no 0.227
RXBO no 0.294 yes 0.027
RXRE no 0.538 yes 0.013
RXVX no 0.843 no 0.401
HE00 no 0.515 no 0.223
LEGATRUU no 0.767 no 0.273
JGENBDUU no 0.667 no 0.281
MXWO0RE no 0.529 no 0.236
BCOMTR no 0.588 no 0.319
HFRXM no 0.617 no 0.247
HFRXAR no 0.645 no 0.681
FX-rates vs RW vs RW
JPYSEK no 0.486 no 0.365
EURSEK no 0.644 no 0.517
USDSEK no 0.610 no 0.513
Times rejected 0 - 2 -

Changing the CAPM regularization coefficient

The CAPM regularization coefficient was decreased such that the network predicted
with volatility corresponding to 10 % of the original volatility in the MSS, i.e. σTarget =
0.10σActual. This new requirement on the volatility resulted in higher CAPM regular-
ization coefficients for each index. The results were slightly better, 7 out of the 15
estimations had a lower MAE than CAPM/RW compared to 4 with the existing error
function. Regarding the OLS model 14 out of 15 ANNs produced predictions that
outperformed the OLS model, compared to 12 with the existing error function.

• 7 out of the 15 ANNs had lower MAE than CAPM/RW

• 14 out of the 15 ANNs had lower MAE than OLS

The performance in the test set seems to increase as the CAPM regularization coef-
ficient is increased. Figure 5.1.6 shows a comparison of the ANN predictions and the
CAPM predictions in the test set for OMX Index.

107

CHAPTER 5. RESULTS & ANALYSES

2014 2015 2016 2017
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ANN vs CAPM out-of-sample

ANN-Estimation

CAPM

2014 2015 2016 2017
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ANN vs CAPM out-of-sample

ANN-Estimation

CAPM

Figure 5.1.6: OMX Index predictions. Left: Out-of-sample predictions of ANN with
lower regularization coefficient (λCAPM = 1) vs CAPM predictions. Right: Out-of-
sample predictions of ANN with higher regularization coefficient (λCAPM = 5) vs
CAPM predictions

Intuitively, the higher the CAPM regularization coefficient, the more similar the ANN
predictions are to CAPM. Also, the volatility of the estimates decreases. In this
context, one could dispute the relevance of using the more complex ANN in favor
of CAPM. Instead of estimating according to its own paradigms, it follows another
model. As such, the final model is more of a tweak of CAPM than a model by its
own and this to a cost of increasing the model complexity tremendously. In order
to develop an alternative model through ANN with estimations according to its own
dynamic that significantly is competitive to CAPM, when it comes to MAE, other
possible modifications has to be investigated.

Nevertheless, extension of CAPM or independent model, penalize errors in relation to
economic models as a part of the ANN optimization seem to be a possibly promising,
further research area if the purpose is to end up with more accurate predictions.

5.1.6 Test for model convergence

A crucial part of a predictive model is its robustness. Ideally, given the same conditions,
one wish to have the same estimation for the same period for every run, i.e. that the
model converges to the same solution. A model that converges to the same solution for
a non-convex problem can be hard to design. Hence, it is desirable that the predictions
at least end up within a narrow interval.

In this model there are two factors that adds stochastic to the model. One factor is
the random search method that tries to find the optimal set of hyper-parameters. By
nature it adds stochastic to the outcome from the model, as the identification of poten-

108

5.1. PHASE 1: NEURAL NETWORK

tially good hyper-parameters are random. The second factor is the initial conditions.
Since the optimization problem is non-convex, the initial conditions are randomized
each run, and as such, the model risk to converge to different local minimas. Further-
more, the cross validation method enhances the stochastic of the results. This is due
to the fact that the final neural network that is chosen by the MSA will be trained on
different data from run to run. Based on the training examples, the resulting weights
might differ quite a bit. The random permutation of the data will not add stochastic
to our results, as the permutation is kept the same for all runs.

Consequently, tests were carried out to study the convergence of the training of the
network. The aim was to find out whether one trained network predicts, for the
upcoming quarter, the same expected return, or at least similar, as another trained
network, given the same model specifications.

Although using 9 initial conditions, which is in the interval proposed by Glorot and
Bengio (2010), the test converged to different weight solutions for different runs, which
led to different predictions in the test set. This can be seen in Figure 5.1.7.

2014 2015 2016 2017

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Different run ANNs vs actual out-of-sample

ANN-Estimations

Actual

Figure 5.1.7: Estimated expected returns for three different runs of the ANN model
vs the actual returns

Ideally to create a deterministic solution one must overcome the problem of deter-
mining the optimal hyper-parameters. This could be done by using grid search over a
infinite large interval of the hyper-parameters. To overcome the problem of non-convex
optimization in the training phase an infinite number of initial conditions could be im-
plemented. But the computational power for such a model is obviously unreasonable
in this thesis.

Enke and Thawornwong (2005) utilized cross validation and the ensemble averaging
technique described in Section 3.4.4 which potentially would have made the model more
stable. But, it could be argued that averaging several predictions that are different is
not a good idea, and instead a model for generating good forecast in the first place
would be better, thus we neglected this method.

However, this makes the proposed model, given this specifications set unfeasible for
use for Söderberg & Partners. There is obviously a lack of robustness in the model
when training the network, which decreases the reliability of the predictions. Further

109

CHAPTER 5. RESULTS & ANALYSES

research has to be done to increase the robustness of the model where the number
of initial conditions, the cross validation method and random search methodology is
hypothetically influencers of the model’s convergence capability and thus suggested
modification areas.

5.2 Phase 2: Portfolio optimization

This phase branches into two steps. First, stochastic processes were estimated in the
MSS and assigned for each one of the portfolio constituents. Second, the NN-portfolios
and the benchmarking portfolios were optimized and run in the test set. In contrast
to phase 1 most of the involving parameters could prespecified, besides the stochastic
processes, but what is left to unravel is the number of scenarios used in the model to
describe possible returns from the processes.

This section will provide the results from the second phase of the thesis and the model
in it is entirety. Further, these results will be analyzed with regards to the chosen
performance metrics and subsequently put in comparison to the benchmarks.

5.2.1 Results from estimated stochastic processes

For each index, GBM, student’s t and GARCH-Poisson processes were estimated.
Based on the estimated parameters, quarterly returns for every index at weekly fre-
quency were transformed via the inversion principle and plotted in QQ-plots. The QQ-
plots did generally not show any linearity. For some of the indices, the untransformed
log-returns unexpectedly yielded a straighter line than any of the tested processes. One
hypothetical reason is the fact that the tails are less present on longer time horizons
as indicated by Cont (2001). Another is that our model comprise the expected return
from the ANNs, for which those are varying through time and capture parts of the
tails. Combined with a time varying volatility this causes an unwanted leverage effect.
Based on the bad fit, a fourth process, GBM with fix volatility was tested with better
results than the other processes for some of the indices, see an example in Figure 5.2.1.

110

5.2. PHASE 2: PORTFOLIO OPTIMIZATION

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-4

-3

-2

-1

0

1

2

3

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

NN exp return sample volatility transformed log-returns

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-4

-3

-2

-1

0

1

2

3

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

Normal GARCH(1,1) transformed log-returns

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

Students T GARCH(1,1) transformed log-returns

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

GARCH-Poisson transformed log-returns

Figure 5.2.1: QQ-plots for HFRXAR Index. Upper left: GBM transformed log-returns.
Upper right: GBM GARCH(1,1) transformed log-returns. Lower left: Student’s T
GARCH(1,1) transformed log-returns. Lower right: GARCH-Poisson transformed log-
returns

In Table 5.2.1 the processes chosen to model the portfolio constituents in the test set are
presented. The same methodology was conducted when determining processes for the
benchmark portfolio, SP with CAPM as estimator of the expected return. For CAPM,
GBM with sample volatility was chosen for 7 indices, Student’s T GARCH(1,1) was
chosen for 4 indices, and GARCH-Poisson was chosen for 1 index.

Table 5.2.1: Chosen processes for each index.

Process Indices Count

GBM sample volatility MXWO, RXBO, RXRE, RXVX 8JGENBDUU, BCOMTR, HFRXM, HFRXAR
GBM GARCH(1,1) -
Student’s T GARCH(1,1) OMX, HE00, LEGATRUU, MXWO0RE 4
GARCH-Poisson -

5.2.2 Results from portfolio optimization

From tests of how different number of scenarios for the return at each re-allocation
affect the computational time in this model, the number of scenarios was set to 1
000. The results from the portfolio optimization for the seven risk levels are presented
in Table 5.2.2. The annualized return for the SP portfolios using neural network for
estimating the expected return (SPNN) is higher for the two most risk averse profiles

111

CHAPTER 5. RESULTS & ANALYSES

than those of the SP portfolios with CAPM estimating expected return (SPCA). Re-
markable though is that the same risk profiles are the only profiles that have higher
volatility than SPCA. Compared to the MV portfolios with CAPM estimated expected
return, the SPNN is constantly beaten on the annualized return but through all the
risk profiles the risk of SPNN is lower. Compared to the equally weighted portfolio,
the return is higher for the four least risk averse and approximately equal for γ = −7.7.
For the two most risk averse profiles, the SPNN is beaten. Noticeable from Table 5.2.2
is the strong relationship between the return and volatility. Regardless of model the
most volatile portfolio seems to be generating the highest return. The Sharpe ratio
left to analyze will be telling of how good the riskadjusted return was for the portfolios
respectively, see Section 5.2.3.

In Figure 5.2.2 the wealth development of the portfolios for four risk levels is presented,
γ = −0.5,−2.99,−7.70,−27.

Table 5.2.2: The results of the portfolios using stochastic programming with neural
network estimated return (SPNN), stochastic programming with CAPM estimated
return (SPCA), equally weighted portfolio (EqWe), and the mean variance portfolio
(MV). The portfolio return and volatility are annualized.

Return (R) Volatility (σ)

Risk level (γ) SPNN SPCA MV EqWe SPNN SPCA MV EqWe

-0.50 0.103 0.141 0.145 0.066 0.130 0.135 0.139 0.061
-1.46 0.091 0.136 0.145 0.066 0.115 0.134 0.139 0.061
-2.99 0.086 0.112 0.138 0.066 0.096 0.118 0.135 0.061
-5.29 0.082 0.090 0.118 0.066 0.076 0.093 0.115 0.061
-7.70 0.066 0.067 0.093 0.066 0.063 0.069 0.106 0.061
-11.20 0.055 0.049 0.074 0.066 0.053 0.049 0.101 0.061
-27 0.035 0.022 0.048 0.066 0.029 0.022 0.096 0.061
ANN vs. - 2 0 4 - 5 7 2

External specifications

The two main properties desired, besides generating portfolios with a good risk-
adjusted return, was to keep the re-allocations moderate while also holding a diversified
portfolio. As such, analyses have been made on the volume of the total re-allocations
and to what rate a diversified portfolio is held of the SPNN portfolios at each rebal-
ancing. The sum of the absolute buy- and sell decisions divided by two is defined as
the re-allocations at a time step, as such the maximum re-allocations for one step is
1, i.e. selling all previous holdings, and investing them in new holdings. Commonly
this sum is denominated as the portfolio turnover. The mean of the re-allocations for
each quarter varied between 0.19-0.27 between the risk profiles for the SPNN portfo-
lios. The maximum single re-allocation was between 0.49-0.99 for the risk levels, i.e.
almost the entire portfolio was re-allocated for one of the risk levels. This is highly

112

5.2. PHASE 2: PORTFOLIO OPTIMIZATION

2014 2015 2016 2017
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Gamma:-0.5

SPNN

SPCA

MV

EqWe

2014 2015 2016 2017
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Gamma:-2.99

SPNN

SPCA

MV

EqWe

2014 2015 2016 2017
0.9

1

1.1

1.2

1.3

1.4

1.5
Gamma:-7.7

SPNN

SPCA

MV

EqWe

2014 2015 2016 2017
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Gamma:-27

SPNN

SPCA

MV

EqWe

Figure 5.2.2: Development of the wealth given four investor risk levels, γ =
−0.5,−2.99,−7.70,−27.

unlikely to be an acceptable level of a financial counseling company and violate the
limits set by S&P, see Section 4.3.2.

To ensure that this phenomena does not depend on the SP portfolio optimization
method used in this model one could compare the results of using CAPM as estimate
in the SP versus the MV portfolios where CAPM is also utilized. The mean of the
re-allocations using CAPM in the SP model varied between 0.00-0.05 for the portfolios,
with a maximum of 0.01-0.15. The MV portfolios had a mean of re-allocations between
0.00-0.07, with a maximum of 0.00-0.80. As such, the SP model seems to lower the
re-allocations, which is in line with the intuition, since the allocation costs are part of
the objective function in the SP model.

It is obvious that the less volatile estimates of the expected return the less re-allocations,
stemming from the fact that SP with CAPM led to lower re-allocations in the portfolio
than the SP of ANN. Due to the fact that our estimates still has a lower volatility
than the actual volatility there is a paradoxical relationship between accomplishing
accurate estimates and keeping the re-allocations sufficiently low. One could of course
increase the transaction costs in the objective function, but the implication of that
would be that the full potential of a potentially accurately estimated expected return
not can be seized.

One potential way of overcoming this issue is looking at how other portfolio man-
agement models as Black and Litterman (1992) can be applied together with neural
network estimated expected returns.

The diversification of the portfolios at each time step is also an issue for the SPNN
portfolio. For the higher risk levels, γ > −6, the portfolios seem to hold only 2-3
assets at each rebalancing, while at lower risk levels, γ < −11 the portfolios hold

113

CHAPTER 5. RESULTS & ANALYSES

approximately 4-6 assets. This tendency is however also noted in the benchmarks, SP
with CAPM and MV, and as such the problems is not attributed to the neural network
estimates, rather the portfolio optimization models themselves.

5.2.3 Evaluation

The evaluation metrics of phase 2 is presented in Table 5.2.3. The Sharpe ratio of
the SPNN portfolios are for the three least risk averse portfolios lower than all of the
three benchmarks, but for the four most risk adverse portfolios the Sharpe ratio is
higher than both SPCA and MV. This means that even if the return for some of those
portfolios were lower than the benchmarks, the volatility of the portfolios were to such
an extent less that the risk adjusted return were higher. The SPNN portfolio did only
have higher Sharpe ratio than the equally weighted portfolio for one of the risk levels,
namely γ = −27. For all of the other risk levels, the equally weighted portfolio had
the highest Sharpe ratio of all of the benchmarks.

The α of the SPNN portfolios are consistently higher than zero, which means that they
during the period did create excess return on the market. The α for SPNN is however
not statistically significant for any of the risk levels. Compared to SPCA and MV, the
SPNN portfolios did consistently have a higher Jensen’s alpha, even if the return was
lower for most of the risk levels. This is partly based on the commonly lower volatility
of the SPNN portfolios, but also that the portfolio returns were less correlated with
the market returns. The α of the equally weighted portfolio is consistently higher
than the α of the other portfolios. The metrics are significantly higher than zero at
confidence level 0.03, at which level it can be statistically concluded that the equally
weighted portfolio created excess return on the market during the period investigated.
The α of 0.061 is almost as high as the actual return 0.066 during the period. This is
based on the low β, which was only 0.02 for the period, based on low correlation of
0.06 between the portfolio returns and the market returns.

Table 5.2.3: Evaluation of portfolio optimization for using SPNN, SPCA, MV and
EqWe. Evaluated using weekly portfolio returns. The annualized α with P-value of
the t-test of α with null hypotehsis α = 0 in parenthesis, and the annualized Sharpe
ratio is presented.

Jensen’s α (P-value) Sharpe ratio

Risk level (γ) SPNN SPCA MV EqWe SPNN SPCA MV EqWe

-0.50 0.013(0.40) 0.001(0.45) -0.000(0.94) 0.061(0.03) 0.79 1.04 1.04 1.06
-1.46 0.010(0.41) -0.003(0.73) -0.000(0.94) 0.061(0.03) 0.78 1.01 1.04 1.06
-2.99 0.017(0.31) -0.01(0.82) -0.002(0.68) 0.061(0.03) 0.89 0.94 1.02 1.06
-5.29 0.024(0.19) -0.004(0.61) -0.002(0.57) 0.061(0.03) 1.06 0.96 1.01 1.06
-7.70 0.016(0.23) -0.002(0.59) -0.014(0.83) 0.061(0.03) 1.03 0.96 0.86 1.06
-11.20 0.011(0.27) -0.001(0.57) -0.024(0.89) 0.061(0.03) 1.00 0.97 0.72 1.06
-27 0.010(0.15) 0.000(0.52) -0.038(0.93) 0.061(0.03) 1.13 0.99 0.48 1.06

ANN vs. - 7 7 0 - 4 4 1

114

5.3. SUMMARY OF RESULTS AND ANALYSES

5.3 Summary of results and analyses

The results and analyses can be summarized as follows:

Phase 1

• The ANNs did produce lower MAE than CAPM for 4 out of the
15 time series. None of the results were statistically significant Section 5.1.4

• The ANNs did produce lower MAE than OLS for 12 out of the
15 time series. The results were statistically significant for two
of the indices. Our results for the indices are similar to previous
research

Section 5.1.4

• Regularizing the error function against CAPM did show more
promising results than using the popular SSE error function Section 5.1.5

• The model lacks reliability due to convergence to different so-
lutions Section 5.1.6

Phase 2

• The SP portfolios using neural networks for expected return
estimation had higher Jensen’s alpha than SPCA and MV on
all risk levels, as well as higher Sharpe ratio on four out of
seven risk levels. However, the equally weighted portfolio out-
performed all of the benchmarks in terms of Jensen’s alpha and
almost all benchmarks in terms of Sharpe ratio.

Section 5.2.3

• Our ANN estimations were too volatile for the SP model, given
the choice of transaction costs, based on the vast portfolio
turnover to satisfy the external specifications set by S&P Section 5.2.2

115

Chapter 6

Conclusions & Discussion

In this chapter conclusions from the empirical study will be presented, along with
logical reasoning of how the method, results and conclusions helped to answer to the
objective of the thesis. A discussion of the model and results in relation to previous
research and economical theory, as well as potential shortcomings of the study is pre-
sented from which suggestions for future research is proposed. Lastly, ethical aspects
of the study are discussed briefly.

6.1 Conclusions

Based on the results of this thesis, no conclusions regarding the possibility of accurately
estimating expected return of broad asset class’s financial times series with artificial
neural networks can be drawn. Our model shows no evidence of outperforming CAPM
nor RW as estimators of the expected return for the studied indices and FX-rates
respectively. For some of the indices studied, the estimations of our model had lower
MAE than CAPM, but no statistical significance was achieved. We can conclude that
a hypothesis that our model could consistently generate better estimates than the
reference methods seems highly unlikely. However, it is hard to generalize beyond
the proposed model and the time series of the study. This is mainly based on that
constructing neural networks incorporates a vast amount of design choices. Potential
design choices that could impact the result, for better or for worse, include: input data
selection, class of neural network, architecture, regularization technique and parameter
choice, and more. There is a chance that a properly designed neural network model
could improve the estimated expected return estimations in relation to widely used
financial models for specific asset classes and/or securities. However, in relation to the
previous research, where a backward stepwise OLS regression model was constructed
as a benchmark, our results seem to conform. To the knowledge of the authors of
this thesis, no research that such a model would be successful in estimating expected
returns of financial time series do exist though.

In this study the estimation fails to be accurate and the model at whole produces
too high portfolio turnover according to the external specifications. Hence to improve
this model the portfolio optimization would have to be fed with more accurate es-
timations of the expected return while at the same time reducing the magnitude of

116

6.2. DISCUSSION

the portfolio turnover. This is possible if the estimations more frequently would be in
the same direction, relative the mean of the estimations, as every actual outcome. As
of now, it occurs too frequently that the estimations are on the opposite side of the
mean of the estimations than the actual outcome, which adds volatility to the estima-
tions without improving the accuracy, and in the end increases the portfolio turnover.
Unfortunately, there are some limitations of the accuracy in the predictions to fulfill
the external specifications, even though the correct direction would always be caught,
this could, with too accurate estimations, exceed the specified restriction of the port-
folio turnover. By nature the most accurate estimation would be the actual return,
and intuitively, a portfolio optimization model defines optimally portfolio allocations
to be where highest expected return is found, given the least risk exposure. Ideally
the model would allocate according to the actual outcome of the next period. It has
been found that the portfolio optimization with increased volatility of the estimations
increases the magnitude of the turnover and in this study the portfolio optimization
model is provided with a, by far, less volatile estimation than the volatility of the
actual outcome. Whether this holds for portfolio optimization models in general will
not be discussed. Conclusively, generating ANN estimations more similar to the ac-
tual outcome and provide it with either stochastic programming or mean variance as
portfolio optimization model while reducing the portfolio turnover, is possible, but the
accuracy is restricted by the model’s context of use, in this case a predefined maximum
portfolio turnover.

The objective of this thesis was to develop artificial neural networks that predict time
varying expected return of financial time series with purpose of optimizing portfolio
weights. In order to fulfill the objective, artificial neural networks were constructed
for 15 financial time series from a broad set of asset classes. Further, a stochastic pro-
gramming model for optimizing portfolio weights using the estimations was developed.
The artificial neural networks estimated the time varying expected returns during 192
weeks for which the portfolio weights for seven risk levels were optimized. The results
stemming from the model was not shown to outperform the benchmarks for the pre-
dictions nor the portfolio weight optimization. The indication is that the estimations
from our model is highly unlikely to be better than the reference methods. Conclu-
sively, no evidence is provided that the proposed model could predict accurately. Also,
regardless of the accuracy the vast portfolio turnover of the model is not congruent
with the context for which the model hypothetically would be used. Nevertheless, the
objective of the thesis was fulfilled.

6.2 Discussion

The potential of predicting the return of financial time series is a widely disputed
area. The topic seems to be a watershed between researchers, professional investors
and private investors, and implies a fundamental difference in the approach to financial
markets by the two camps. Given the weak form of the efficient market hypothesis,
none of the technical data publicly available can be used to predict the future return of
financial time series, and as such the relevance of artificial neural networks for financial
time series prediction would be close to zero. Even if machine learning in general, and
neural networks in particular, is increasingly popular in data analytics, and given at-

117

CHAPTER 6. CONCLUSIONS & DISCUSSION

tention in many different domains, the fact remains; if the input to the model contains
no information about future returns, the model will not succeed. The prosperity in
other domains is based on the ability to find existing complex relationships between
inputs and outputs, such as; the relationship between mammograms and breast can-
cer; the relationship between physiological measures and cardiac abnormalities. From
this study and thus to the knowledge of the authors, there is no proof that sufficient
relationship between historical data and future return exists for the neural network
methodology to succeed in predicting financial time series.

Since this study comprised a vast number of different financial asset classes, it was
problematic to determine which inputs to be used in the model. Assumingly, these
financial time series do exhibit different statistical properties and dependencies, and
as such their networks respectively require different informative inputs. In our model,
the inputs to each asset class was adapted rather data driven with a Pearson corre-
lation test. It would be of interest to investigate the performance of artificial neural
networks using empirically determined risk premiums in the market instead, e.g. the
five factors in Fama and French (2015): the market, size, book-to-market, profitability
and the investment factor. Investigating the potential use of artificial neural networks
to relaxe the linearity assumption of multi-factor models to improve the estimations
would be of great interest. Such study would though limit the asset class that could
be studied to specific equities, but a potentially successful model could be used by
S&P in their discretionary portfolio management. Also, if trying to predict return for
specific equities, expertise for what information the return of the specific company is
dependent on could be utilized to render relevant additional explaining inputs.

Regardless of financial model there is of utmost importance that the model is robust.
For which robust in this context is defined as that the estimates of the model converges
to a narrow set of solutions for every run. As a professional advisor the specific advice
must be deterministic not dependent of a stochastic model. One advantage of artificial
neural network that has been shown to be a dilemma in this context is the fact that
the functional relationship between informative data and estimations is not predefined.
The functional relationship is determined through a stochastic optimization model for
each financial time series to be predicted. This sources problems with the robustness.
Given two people running this model with the exact same conditions, one might get
a network predicting a specific outcome for the next period, and the other a network
predicting the same time series but with a different outcome. On the other hand a
trained network will predict the same return given the same input no matter when its
run, regardless if this model is delivered as a trained networks or left to be trained by
the user, this causes a huge decrease of its predictive reliability. There are two ways
of overcoming this dilemma identified. The obvious way would be to just eliminate
the stochastic of the results by always conducting the same random search and the
same initial conditions, but the relevance of such a model is not higher since the deter-
ministic results still would be dependent on the locked stochastic parameters. Further
this would imply to remove the model selection algorithm which would by nature of
optimization decrease its potential. Another way would be by utilizing grid search for
infinite large set of hyper parameter, and use an infinite amount of initial conditions
on the weights. A consequence of this solution is the increase of the complexity in the
model, the computational time would increase tremendously. One could compare this

118

6.2. DISCUSSION

to CAPM where the complexity comprises to determine one parameter and keep the
Ockhams’ Razor1 in mind, and the choice of model would be obvious. The optimal
solution though would be to narrow the number of possible solutions, which implies
narrowing the limits for the hyper-parameters. A fact is that neural networks creates
a functional relationship, thus in order to reduce the limits the designer requires a
deep understanding of how the parameter choices affects the functional relationship
created. On top of that, the designer also needs an understanding of the function that
is to be approximated, i.e. what is the pattern between the input data and the output.

Another dilemma of neural networks to be enhanced is the problem of overfitting the
data. It has been identified that this is a hard nut to crack. Of course there is of
interest to identify the patterns in the training data and create functional relationship
that describe it as good as possible. But by the definition of overfitting, an all too good
trained network will not generalize to out of sample data. This is a conflict of interest
and the optimal trade off between a trained and a generalized network is hard to find.
In this thesis this problem has been treated by early stopping and regularization to
CAPM. Unfortunately overfitting it is still a problem in this model and whether it is
right approach to use regularization is hard to say. However the optimal magnitude of
the regularization coefficient have not been found and the optimal method to overcome
this problem remains to be explored. This study though do add to the existing research,
the methodology of regularizing the error function against CAPM. The technique of
regularizing the errors against a traditional economic model do show some promising
results. The prediction performance of our artificial neural networks were distinctly
improved when regularizing against the CAPM prediction, where the hypothesis is that
the networks became less overfitted. Also, the status quo in the literature of minimizing
the quadratic errors was challenged, and a broad range of exponents of the errors was
tested. However, further examination of the usefulness of other exponents than the
quadratic together with CAPM regularization would be of interest. Further, it should
be adviced for researchers in the area of estimating the expected return of financial
time series, to evaluate their results against relevant economic models, something that
far from all of the researchers in the field have done. Also, the statistical significance
of the findings should be presented in order to be able to draw statistical conclusions.
We propose the widely used CAPM as a benchmark model estimating equity, and the
Diebold and Mariano (1995) test for testing for forecast inequality.

Further research areas

Potential future research areas proposed can be summarized as:

• Investigate multi-factors as inputs to artificial neural networks for stock predic-
tion in order to relax linearity assumptions

• Investigate the implication of how different parameter settings limits the func-
tional approximation, with purpose of narrowing the number of free parameters

• Further investigate the potential use of error function exponents not equal to
two together with the technique of economic model regularization

1"Accept the simplest explanation that fits the data" - increased complexity increases the possi-
bility of errors

119

CHAPTER 6. CONCLUSIONS & DISCUSSION

6.3 Ethical aspects

An ethical aspect of this thesis is the potential misuse of similar model as the one
proposed. Complex financial models that gear the investor with a distinct informa-
tional advantage compared to the market could generate excess return to the market.
In order to bring transparency to the financial market, such models should be docu-
mented and made publicly available for the market to understand which factors that
an investor get compensated for being exposed to, and how they get compensated.
The predictive power of such model could still be valuable, even if the information
is priced into the asset price, as the model then could be used to create wanted risk
exposures. The findings in this thesis do however not give any investor informational
advantage, and as such the necessity to make it publicly available is low.

When conducting a study to determine a model for predicting further returns, the
researcher is faced with several ethical considerations, as the conclusions will be drawn
by the performance on a test set. The researcher should by no means investigate
the characteristics of the test data set before deigning the model, else he or she can
be biased when designing the model by the gathered knowledge. By acquiring such
knowledge, the researcher might unconsciously end up with a model better than he
or she could do in a real setting. The authors of this thesis have maintained a strong
moral compass, and evaluated the out-of-sample performance first when the model
was specified. The sensitivity analysis was conducted subsequent to the actual model.
As such, there is an infinitesimal risk that we were biased by the characteristics in the
test set when determining the model.

120

Bibliography

Agatonovic-Kustrin, S. and Beresford, R. (1999). Basic concepts of artificial neural
network (ann) modeling and its application in pharmaceutical research. Journal of
Pharmaceutical and Biomedical Analysis.

Alizadeh, F., Haeberly, J.-P. A., and Overton, M. L. (1998). Primal-dual interior-point
methods for semidefinite programming: Convergence rates, stability and numerical
results. SIAM Journal on Optimization, 8(3).

Amenc, N. and Sourd, V. L. (2003). Portfolio Theory and Performance Analysis.
Wiley.

Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts. International Economic Review,
39(4).

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep
Architectures. Springer Berlin Heidelberg.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press
Oxford.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Black, F. and Litterman, R. (1992). Global portfolio optimization. Financial Analysts
Journal, 30(5).

Blackrock (2015). The evolution of active investing finding big alpha in big
data. https://www.blackrock.com/institutions/en-ch/literature/whitepaper/finding-
big-alpha-in-big-data-en-zz.pdf.

Blom, G., Enger, J., Englund, G., Grandell, J., and Holst, L. (2005). Sannolikhetsteori
och statistikteori med tillämpningar. Studentlitteratur.

Blomvall, J. (2013). Garch-poisson. Internal document, Linköping University.

Blomvall, J. (2016). Lecture notes in tppe33 portfolio management lecture 5, factor
models - apt. Linköping University.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Jour-
nal of Econometrics, 31.

121

BIBLIOGRAPHY

Box, G. E. P. and Jenkins, G. M. (1970). Time series analysis: forecasting and control.
Holden Day.

Braun, J. and Griebel, M. (2009). On a constructive proof of kolmogorov’s superposi-
tion theorem. Constructive Approximation.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24.

Brock, W. A. and de Lima, P. J. F. (1995). Nonlinear time series, complexity theory
and finance. Elsevier.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance.
John Wiley Sons Ltd.

Chester, D. L. (1990). Why two hidden layers are better than one. Proceedings of the
international joint conference on neural networks, 1.

Cheung, Y.-W., Chinn, M. D., and Pascual, A. G. (2005). Empirical exchange rate
models of the seventies: Do they fit out of sample? Journal of International Money
and Finance, 24(7).

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical
issues. Quantitative Finance, 1.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, 2:303–314.

David H. Ackley, G. E. H. and Sejnowski, T. J. (1985). A learning algorithm for
boltzmann machines. Cognitive science, 9:147–169.

Demuth, H. and Beale, M. (2002). Neural network toolbox - for use with matlab R©:
User’s guide.

Devroye, L. (1986). Non-uniform Random Variate Generation. Springer-Verlag.

Diebold, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal
perspective on the use and abuse of diebold-mariano tests. Journal of Business
Economic Statistics, 23(1).

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of
Business Economic Statistics, 13(3).

Enke, D. and Thawornwong, S. (2005). The use of data mining and neural networks
for forecasting stock market returns. Expert Systems with Applications, 29(4).

Fama, E. F. (1970). Capital asset prices: A theory of market equilibrium under
conditions of risk. Journal of Finance, 25.

Fama, E. F. and French, K. R. (1970). The capital asset pricing model: Theory and
evidence. The Journal of Economic Perspectives, 25.

Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of
Financial Economics, 1.

Fausett, L. V. (1994). Fundamentals of Neural Networks: Architectures, Algorithms
And Applications. Pearson.

122

BIBLIOGRAPHY

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence Theories,
Methods, and Technologies. MIT Press books.

Forsling, G. and Neymark, M. (2011). Matematisk analys - En variabel. Liber.

Freitas, F. D., de Souza, A. F., and de Almeida, A. R. (2009). Prediction-based
portfolio optimization model using neural networks. Neurocomputing, 72(10-12).

Gangal, A. S., Kalra, P. K., and Chauhan, D. S. (2007). Performance evaluation of
complex valued neural networks using various error functions. International Jour-
nal of Electrical, Computer, Energetic, Electronic and Communication Engineering,
1(5).

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks.

Granger, C. W. J. and Newbold, P. (1977). Forecasting economic time series. Academic
Press.

Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally
efficient markets. The American Economic Review, 70(3).

Guenther, F. H. (2001). Neural networks: Biological models and applications. Inter-
national Encyclopedia of the Social & Behavioral Sciences.

Gómez-Ramos, E. and Venegas-Martínez, F. (2013). A review of artificial neural
networks: How well do they perform in forecasting time series? Journal of Statistical
Analysis, 6(2).

Hagan, M. T., Demuth, H. B., Beale, M. H., and Jesús, O. D. (2014). Neural Network
Design second edition. Martin T. Hagan.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining - Concepts and Techniques.
Morgan Kaufmann.

Hann, T. H. and Steurer, E. (1996). Much ado about nothing? exchange rate fore-
casting: Neural networks vs. linear models using monthly and weekly data. Neuro-
computing, 10:323–339.

Hanna, S. D., Gutter, M. S., and Fan, J. X. (2001). A measure of risk tolerance based
on economic theory. Journal of Financial Counseling and Planning; Columbus, 12.

Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: Does
anything beat a garch(1,1)? Journal of Applied Econometrics, 20.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Second Edition.
Pearson Education Inc.

Haykin, S. (2009). Neural Networks and Learning Machines. Pearson Education Inc.

Hebb, D. O. (1949). The Organization of Behavior. New york: Wiley.

Hill, T., O’Connor, M., and Remus, W. (1996). Neural network models for time series
forecasts. Management Science, 42(6).

123

BIBLIOGRAPHY

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79:2554–
2558.

Hornik, K. (1991). Approximation capabilites of multilayer feedforward networks.
Neural Networks, 4:251–257.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2:359–366.

Hsu, M.-W., Lessmanna, S., Sunga, M.-C., Maa, T., and Johnson, J. E. (2016).
Bridging the divide in financial market forecasting: machine learners vs. financial
economists. Expert Systems With Applications, 61.

Hu, M. Y., Zhang, G., Jiang, C. X., and Patuwo, E. (1999). A cross-validation analysis
of neural network out-of-sample performance in exchange rate forecasting. Decision
Sciences, 14.

Huang, W., Nakamori, Y., and Wang, S. (2004). A general approach based on autocor-
relation to determine input variables of neural networks for time series forecasting.
Journal of Systems Science and Complexity, 17.

Hull, J. C. (2009). Options, futures, and other derivatives. Pearson.

Hull, J. C. (2012). Risk Management and Financial Institutions. John Wiley Sons.

Ippolito, R. A. (1989). Efficiency with costly information: A study of mutual fund
performance, 1965-1984. The Quarterly Journal of Economics, 104(1).

Janfalk, U. (2014). Linjär Algebra.

Jensen, M. C. (1967). The performance of mutual funds in the period 1945-1964.
Journal of Finance, 23(2).

J.P.Morgan/Reuters (1996). Riskmetrics - technical document.

Kaastra, I. and Boyd, M. (1996). Designing a neural network for forecasting financial
and economic times series. Neurocomputing, 10(3).

Kavzoglu, T. (1999). Determining optimum structure for artificial neural networks. In
Proceedings of the 25th Annual Technical Conference and Exhibition of the Remote
Sensing Society.

Kima, T. Y., Ohb, K. J., Kimc, C., and Doa, J. D. (2004). Artificial neural networks
for non-stationary time series. Neurocomputing, 61.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient Backprop.
Springer.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets. The Review of Economics and Statistics,
47(1).

Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolu-
tionary perspective. The Journal of Portfolio Management, 30(5).

124

BIBLIOGRAPHY

Lo, A. W. and MacKinlay, A. C. (1988). Stock market prices do not follow random
walks: Evidence from a simple specification test. The Review of Financial Studies,
1(1).

Lo, A. W., Mamaysky, H., and Wang, J. (2000). Foundations of technical analysis:
Computational algorithms, statistical inference, and empirical implementation. The
Journal of Finance, 55(4).

Luenberger, D. G. (1998). Investment Science. Oxford University Press.

Lundgren, J., Rönnqvist, M., and Värbrand, P. (2008). Optimeringslära. Studentlit-
teratur.

Maasoumi, E. and Racine, J. (2002). Entropy and predictability of stock market
returns. Journal of Econometrics, 107.

Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of
Economic Perspectives, 17(1).

Malkiel, B. J. (1973). A random walk down Wall Street. W. W. Norton Company,
Inc.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1).

McCulloch, W. S. (1943). A Logical Calculus of Ideas Immanent in Nervous Activity.
The University of Chicago Press.

Meese, R. and Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do
they fit out of sample? Journal of international economics, 3(24).

Meese, R. and Rogoff, K. (1988). Was it real? the exchange rate-interest differntial
relation over the modern floating-rate period. The Journal of Finance, 43(4).

Mussa, M. (1986). Nominal exchange rate regimes and the behavior of real exchange
rates: Evidence and implications. Carnegie-Rochester Conference Series on Public
Policy, 25(7).

Naftaly, U., Intrator, N., and Horn, D. (1997). Optimal ensemble averaging of neural
networks. Network: Comput. Neural Syst., 8.

Ng, A. (2016). Machine Learning. Lecture Notes in Machine Learning. Coursera,
Stanford University.

Nguyen, D. and Widrow, B. (1990). Improving the learning speed of 2-layer neural net-
works by choosing initial values of the adaptive weights. 1990 IJCNN International
Joint Conference.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Perrone, M. P. (1993). Improving regression estimation: Averaging methods for vari-
ance reduction with extensions to general convex measure optimization. PhD Thesis
Brown University.

Persson, J. and Böiers, L.-C. (2005). Analys i flera variabler. Studentlitteratur.

125

BIBLIOGRAPHY

Pesaran, E. H. and Timmermann, A. (1992). A simple nonparametric test of predictive
performance. Journal of Business Economic Statistics, 10(4).

Prechelt, L. (1998). Early Stopping — But When? Springer.

Qi, M. and Zhang, G. P. (2001). An investigation of model selection criteria for neural
network time series forecasting. European Journal of Operational Research, 132.

Rahman (1968). A Course in Theoretical Statistics. Charles Griffin and Company.

Roll, R. (1977). A critique of the asset pricing theory’s tests. Journal of Financial
Economics, 4.

Rolls, E. T. and Treves, A. (1998). Neural networks and brain function. Oxford
university press.

Sarle, W. S. (2002). Neural network faq, periodic posting to the usenet newsgroup
comp.ai.neural-nets.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2009). Lectures on Stochastic Pro-
gramming Modelling And Theory. SIAM.

Sharpe, W. F. (1964). Efficient capital markets: A review of theory and empirical
work. Journal of Finance, 19(3).

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1).

Siegelmann, H. T., Horne, B. G., and Giles, C. L. (1997). Computational capabili-
ties of recurrent narx neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, 27:208–215.

Siegelmann, H. T. and Sontag, E. D. (1991). Turing computability with neural nets.
Applied Mathematics Letters, 4:77–80.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst.
Statist. Univ. Paris.

Szeliga, M. I., Verdes, P. F., Granitto, P. M., and Ceccatto, H. A. (2003). Artificial
neural network learning of nonstationary behavior in time series. International
Journal of Neural Systems, 13(2).

Timmermann, A. and Granger, C. W. (2004). Efficient market hypothesis and fore-
casting. International Journal of Forecasting, 20.

Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business
Review, 43(1).

Trivedi, P. K. and Zimmer, D. M. (2005). Copula modeling: An introduction for
practitioners. Foundations and Trends in Econometrics, 1.

Tsai, C.-F. and Hsiao, Y.-C. (2003). Combining multiple feature selection methods for
stock prediction: Union, intersection, and multi-intersection approaches. Decision
Support Systems, 50.

Walczak (2001). An empirical analysis of data requirements for financial forecasting
with neural networks. Journal of Management Information Systems.

126

BIBLIOGRAPHY

Widrow, B., Rumelhart, D. E., and Lehr, M. A. (1997). Neural networks: Applications
in industry, business and science. Communications of the ACM, 37(3).

Zhang, G., Patuwo, E., and Hu, M. Y. (1998). Forecasting with artificial neural
networks: The state of the art. International Journal of Forecasting, 14.

Zilouchian, A. (2001). Fundamentals of Neural Networks. CRC Press.

127

Appendix A

Variable declaration

One-dimensional Vector Matrix

Generic variable x x X
Stochastic variable X X X

This holds except for all capital letters declared below

128

Variables

Generic

Notation Description

x Function input
u Uniformly distributed variable as ∼ U [0, 1]
y Function output
r Time series return
µ Expected value
σ Volatility
σ2 Variance
Cov Covariance
ρ Correlation
% Autocorrelation
q Component of eigenvector
κ Principal component
ε Error
ε Independently identically distributed error
p probability
S Price of general time series
Sr Sharpe ratio

Phase 1 specific

x Input
h Hidden node
a Activation of random node
ω Network weights
z Output from random node
y Output from network
µn Expected return Neural Network
µb Expected return benchmark model
w Network weights

Phase 2 specific

xbuy Buy decision
xsell Sell decision
w Portfolio weights
W Wealth
Rn Portfolio return Neural Network
Rb Portfolio return benchmark portfolio
ξ help-variable stochastic programming

129

APPENDIX A. VARIABLE DECLARATION

Parameters

Generic

Notation Description

θ Random unknown parameter
n, k Random discrete number
t Random time point
T Random set of time point
α, β, ι Random constants
λ Decay factor EWMA, Eigenvalue, hyper parameter
β Systematic risk
p,q GARCH parameter

Phase 1 specific

L Number of Layers
M Number of nodes
γ Risk aversion
η Learning rate
φ Regularization term
K Crossvalidation folds
N Number of networks in validation set
Nt Number of training examples
Nv Number of validation examples
Nte Number of testing examples
τ Lag periods

Phase 2 specific

I Number of assets
S Number of Monte Carlo simulated scenarios
i ∈ {1, . . . , I} Number i of the asset xi in the portfolio universe
s ∈ {1, . . . , S} Number s of the Monte Carlo generated scenarios
∆t Monte Carlo simulation time period
xiniti Initial holding in asset i
r

(s)
i Return for asset i in scenario s in SEK
cinit Initial cash
rf Return for the riskfree asset in SEK
ps Probability for scenario s occurring
γ Risk aversion parameter
τ Transaction cost

130

Functions and models

Generic

Notation Description

g(·), f(·) Random function
Pr(·) Probability
pdf(·) General probability density function
cdf(·) General cumulative distribution function
F(·) General cumulative distribution function
E[·] Expected value
Var[·] Variance
Cov [·] Covariance
c(·) Copula probability density function
C(·) Copula cumulative distribution function
Φ(·) Student’s t distributed copula
Li(·) Likelihood function

Model specific

ϕ(·) Activation function
ϕh(·) Activation function hidden neurons
ϕo(·) Activation function output neurons
U(·) Utility function
J(·) Error function

Index

Generic

Notation Description

i, j Random index
τ Random time lag index

Model specific

l Layer index

τ

131

Appendix B

Data description

Table B.0.1: Assets classes used for forecasting and portfolio optimization. The FX-
rates were not used in the portfolio optimization. The first column is an ID for the
asset class. The second column describes the asset class. The third column describes
the index name in Bloomberg. The fourth column describes the unique identifier in
Bloomberg. The fifth column contains the firt data point of the time series, and the
sixth column contains the length of the time series sampled at weekly frequency.

No. Assets Index BBG Ticker Start Data points

1 OMX Index Swedish equity OMX Stockholm 30 Index 1986-12-19 1586
2 MXWO Index Global equity MSCI AC World Total Return Index 1971-01-08 2404
3 RXBO Index Interest rate OMRX Total Bond Index 1996-09-27 1062
4 RXRE Index Inflation OMRX Real Return Index 1996-10-18 1059
5 RXVX Index Cash OMRX Treasury Bill Index 1996-09-27 1062
6 HE00 Index Credit Merrill Lynch Euro High Yield Constrained 1998-01-02 1010
7 LEGATRUU Index Global bond Bloomberg Barclays Global-Agg. Tot. Return Index 1990-02-02 1423
8 JGENBDUU Index EM currency/bond JPMorgan GBI EM Broad Diversified Index 2003-01-03 735
9 MXWO0RE Index Real estate MSCI World Real Estate Index 1994-12-30 1167
10 BCOMTR Index Commodity Bloomberg Commodity Index Total Return 1991-01-04 1375
11 HFRXM Index CTA HFRX Macro/CTA Index 1998-01-30 992
12 HFRXAR Index Absolute return HFRX Absolute Return Index 1998-01-02 996
13 JPYSEK Index JPYSEK - 1971-01-08 2404
14 EURSEK Index EURSEK - 1998-12-30 1466
15 USDSEK Index USDSEK - 1971-01-08 2404

B.1 Macro factors

Table B.1.1 presents the macro factors used as potential inputs. The macro factors
are only used when they are available, i.e. GDP for Q1 is used first in Q2 etc. Abbre-
viations used in the table:

• YoY - Year on Year, meaning the percentual change in relation to the same
period last year. Appropriate for data that shows seasonality.

• QoQ - Quarter on Quarter, meaning the percentual change in relation to the last
quarter. Appropriate for data that do not show seasonality.

• SA - Seasonally Adjusted data.

132

B.1. MACRO FACTORS

• NSA - Not Seasonally Adjusted data.

Short name Index First Frequency Comment

PurchasingManagerIndex NAPMPMI 1960 Monthly Nomin. Manufac.
USProduction IP YOY 1960 Monthly YoY%
JPYIndustrialProduction JNIPYOY 1979 Monthly YoY%
ChinaProduction CHVAIOY 1990 Monthly YoY%
EURProduction EUITEMUM 1991 Monthly YoY%
Export MWT PEWO 2000 Monthly Nomin. World
USConsumerConfidence CONCCONF 1977 Monthly Nominal SA
USGDP GDP CUAQ 1960 Quarterly QoQ% SA
EURGDP EUGDEMU 1995 Quarterly QoQ% SA1

SWEGDP SWGCGDPY 1981 Quarterly YoY% NSA
CHGDP CNNGPQ$ 1992 Quarterly YoY% NSA2

JPYGDP JGDOQOQ 1980 Quarterly QoQ% SA
USUnemployment USURTOT 1960 Monthly % SA
EURUnemployment UMRTEMU 1998 Monthly % SA
CHUnemployment CNUERATE 2002 Quarterly % NSA
JPYUnemployment JNUNRT 2001 Monthly % NSA
USMoneySupply M1 Index 1981 Weekly YoY% 3

CHMoneySupply CNMSM1 1990 Monthly YoY% 4

EURMoneysupply ECMAM1YY 1981 Monthly YoY% 5

JPYMoneySupply JMNSM1 2003 Monthly YoY% 6

USInflation CPI YOY 1960 Monthly YoY%
JPYInflation JNCPIYOY 1971 Monthly YoY%
EURInflation ECCPEMUY 1997 Monthly YoY%
CHInflation CNCPIYOY 1990 Monthly YoY%
BalticDryIndex BDIY 1985 Weekly Nominal
SWEKonjunkturbarometern SWETSURV 1996 Monthly Nominal
PEMSCIWorld -7 1995 Quarterly Nominal
US10YYields USGG10YR 1967 Weekly Nominal
US3YYields USGG10YR 1967 Weekly Nominal
US3MYields USGB090Y 1997 Weekly Nominal
JPY10YYields GJGB10 1987 Weekly Nominal
JPY3YYields GJGB3 1989 Weekly Nominal

1Originally nominal, seasonally adjusted. Converted to QoQ as the index was seasonally adjusted
2Originally nominal, not seasonally adjusted. Converted to YoY as the index was not seasonally

adjusted.
3Originally nominal, not seasonally adjusted. Converted to YoY as the index was not seasonally

adjusted.
4Originally nominal, not seasonally adjusted. Converted to YoY as the index was not seasonally

adjusted.
5Originally nominal, not seasonally adjusted. Converted to YoY as the index was not seasonally

adjusted.
6Originally nominal, not seasonally adjusted. Converted to YoY as the index was not seasonally

adjusted.
7This is not a specific index, rather a Bloomberg calculated metric

133

APPENDIX B. DATA DESCRIPTION

JPY3MYields JY0003M 1986 Weekly Nominal
EUR10YYields GECU10YR 1993 Weekly Nominal
EUR3YYields GECU3YR 1994 Weekly Nominal
EUR3MYields EUR003M 1999 Weekly Nominal
CN10YYields GCNY10YR 2005 Weekly Nominal
CN3YYields GCNY3YR 2005 Weekly Nominal
CN3MYields IBO03M 1996 Weekly Nominal

134

Appendix C

Estimations of volatility and
correlation

Below theory for estimation of volatility and correlation is provided.

C.1 Expected volatility

The mathematical definition of the variance of a random variable X is E[(X − µ)2] =
σ2. In finance, volatility is a common word to refer to the standard deviation σ of the
return for a financial instrument, i.e. a random variable. Standard deviation and thus
the volatility is the square root of the variance.

Let us define σt as the volatility at time t estimated at time t − 1. The volatility of
financial time series is commonly measured on a daily basis. A traditional method for
estimating the volatility for the stochastic return R of an asset is by using its historical
standard deviation, using T past returns, defined as

σ̂2
t =

1

T

T∑
τ=1

(rt−τ= − r̄)2 (C.1.1)

also referred to as the Simple Moving Average (SMA) model by J.P.Morgan/Reuters
(1996). SMA gives equal weights to all deviations, no matter when in time they hap-
pened. Also, if one uses a moving window technique, the metric will change rapidly
when extreme observations fall out of the sample window. Hull (2012); J.P.Morgan/Reuters
(1996); Cont (2001) note that the volatility of financial time series is non-constant
which means that there exist periods with higher and respectively lower volatility
motivating introduction of a model that incorporate volatility clustering (see Section
3.1.2) which is a non-stationary attribute.

An alternative to the SMA is the Exponentially Weighted Moving Average (EWMA)
model that introduces a decay factor λ ∈ (0, 1) that gives recent observations higher
weights. The model is, depending on decay factor choice, more responsive to re-
cent changes, and deals with large changes associated with samples falling out of the
sample window as the weights associated with the sample decreases exponentially.

135

APPENDIX C. ESTIMATIONS OF VOLATILITY AND CORRELATION

J.P.Morgan/Reuters (1996) uses EWMA for volatility calculations based on the moti-
vation that the metric provide an optimal balance given the context that most prac-
titioners in financial risk work within, although not detailing the motivation further.
An interpretation is that they find the metric good enough for most purposes. The
volatility estimation is in EWMA calculated as

σ̂2
t = (1− λ)

T∑
τ=1

λτ=1(rt−τ − r̄)2. (C.1.2)

based on the approximation that unity holds, i.e. the sum of the weights is equal to
1, meaning that

T∑
τ=1

λτ−1 ≈ 1

1− λ
. (C.1.3)

As T → ∞ the two expressions in (C.1.3) are equivalent. Considering daily obser-
vations of the return, it holds approximately that the arithmetic mean of the returns
r̄ = 0 (holds approximately for weekly returns as well), an approximation often made
in volatility models (J.P.Morgan/Reuters, 1996), which reduces the model to

σ̂2
t = (1− λ)

T∑
τ=1

λτ−1r2
t−τ . (C.1.4)

The relationship can also be written in recursive form

σ̂2
t = (1− λ)

∞∑
τ=1

λτ−1r2
t−τ = (1− λ)(r2

t−1 + λr2
t−2 + λ2r2

t−3 + . . .)

= λ (1− λ)(r2
t−2 + λr2

t−3 + λ2r2
t−4 + . . .)︸ ︷︷ ︸

σ̂2
t−1

+(1− λ)r2
t−1

= λσ̂2
t−1 + (1− λ)r2

t−1

(C.1.5)

which for computational purposes is compelling as only the latest volatility estimate
and the latest return has to be available. By calculating the weighted average of in-
dividual optimal decay factors, estimated by MLE, J.P.Morgan/Reuters (1996) found
that an appropriate decay factor for daily returns is 0.94. andformonthlyreturnsis0.97.

Several other models exist, such as extreme value techniques, two step regression
analysis, stochastic volatility, applications of chaotic s and GARCH. The General-
ized Autoregressive Conditional Heteroskedasticity (GARCH) is a model that has
received high attention by academia and financial companies (J.P.Morgan/Reuters,
1996). Bollerslev (1986) describes the GARCH model that accomodates mean rever-
sion, not provided by EWMA, and leptokurtosis (heavy tails). The general GARCH(p,q)
model uses p past returns and q past volatilities for estimating the volatility and is
defined as

136

C.1. EXPECTED VOLATILITY

σ̂2
t = ω +

p∑
i=1

αir
2
t−i +

p∑
i=1

βiσ̂
2
t−i (C.1.6)

In practice, GARCH(1,1) is by far the most popular of the GARCH models (Hull,
2012), and simplifies the volatility forecast to the recursive form

σ̂2
t = ιVL + αr2

t−1 + βσ̂2
t−1, ι+ α + β = 1, ι, α, β ≥ 0 (C.1.7)

where VL is the long run average. The EWMA is a special case of the GARCH(1,1)
with ι = 0, α = 1− λ and β = λ (Hull, 2012). The model can also be rewritten with
ω = ιVL for parameter estimation purposes, which gives

σ̂2
t = ω + αr2

t−1 + βσ̂2
t−1, ι = 1− α− β, VL =

ω

ι
, α + β ≤ 1. (C.1.8)

Several extensions of the GARCHmodel have been proposed, e.g. Exponential GARCH,
Integrated GARCH, Switching Regime ARCH (J.P.Morgan/Reuters, 1996), but de-
spite its relative simple relationship, the GARCH(1,1) is found to provide relatively
good predictive performance (Andersen and Bollerslev, 1998). In a study Hansen
and Lunde (2005) compare the predictive performance of GARCH(1,1) with 330 more
sophisticated ARCH models and find that no model outperforms GARCH(1,1) on
predicting volatility on DM/USD spot rate and IBM return.

Estimation of EWMA and GARCH parameters can be done with e.g. maximum
likelihood-estimation.

The calculations of volatility this far has been for one day ahead, for which the as-
sumption of r̄ = 0 approximately holds. However, longer forecast horizons might be
of interest. We have that ι = 1− α− β which in (C.1.7) gives

σ̂2
t − VL = α(r2

t−1 − VL) + β(σ̂2
t−1 − VL) (C.1.9)

which is equivalent with

σ̂2
t+τ − VL = α(r2

t+τ−1 − VL) + β(σ̂2
t+τ−1 − VL). (C.1.10)

If we assume that E[ri] = 0, ∀i we have that E[r2
t+τ−1] = σ2

t+τ−1 which in (C.1.10)
gives

E[σ2
t+t − VL] = (α + β)E[σ2

t+τ−1 − VL]. (C.1.11)

By repeatedly substituting E[σ2
t+τ−1−VL] and noting that E[VL] = VL we end up with

E[σ2
t+t] = VL + (α + β)t(σ̂2

t − VL) (C.1.12)

137

APPENDIX C. ESTIMATIONS OF VOLATILITY AND CORRELATION

which is the τ−step ahead forecast of the volatility. (Bollerslev, 1986) For EWMA,
α + β = 1, hence

E[σ2
t+t] = σ̂2

t . (C.1.13)

J.P.Morgan/Reuters (1996) show that the time-scaled volatility is simply the square
root of multiples of the single day forecasts meaning that

σ̂t,T =
√
T σ̂t. (C.1.14)

To aggregate the volatility of a portfolio that consists of a set of assets, we must
introduce the concept of covariance and correlation described in Section C.2.

C.2 Expected correlation

The correlation of two random variables describes to which degree the random vari-
ables have some dependence or relationship to each other. The most commonly used
correlation is the Pearson correlation coefficient, which between two random variables,
X and Y , is defined as

ρX,Y =
E[(X − µX)]E[(Y − µY)]

σXσY
=
Cov[X, Y]

σXσY
, ρX,Y ∈ [−1, 1] (C.2.1)

We will in this thesis define correlation as the Pearson correlation coefficient. Other
correlation metrics that exist is Spearman’s rank correlation coefficient and Kendall’s
rank correlation coefficient, but the description of these will be left out in this thesis.

The equally weighted historic correlation can be used to estimate future correlation,
and is calculated from the observations as

ρ̂X,Y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
. (C.2.2)

Further, the covariance between X and Y , Cov[X, Y], involving both variance and
correlation to describe the joint variability, is obtained from equation C.2.1 as

Cov[X, Y] = ρ
X,Y

σ
X
σ
Y

(C.2.3)

Analogous with suggested models for estimating the volatility of an asset, a higher
weight to recent observation is compelling. Therefore multivariate EWMA and multi-
variate GARCH models are developed to estimate the future covariance (Amenc and
Sourd, 2003). The multivariate EWMA model for estimating the covariance is defined
analogous to the univariate EWMA model as

ˆCov[X, Y]t = λ ˆCov[X, Y]t−1 + (1− λ)rx,t−1ry,t−1, λ ∈ (0, 1). (C.2.4)

138

C.2. EXPECTED CORRELATION

Intuitively, the multivariate GARCH(1,1) model is hence defined as

ˆCov[X, Y]t = ιVL+αrx,t−1ry,t−1+β ˆCov[X, Y]t−1, ι+α+β = 1, ι, α, β ≥ 0 (C.2.5)

J.P.Morgan/Reuters (1996) shows that time-scaling of covariances is equivalent to
time-scaling of variances, which from (C.1.14) imply that

ˆCov[X, Y]t,T =
√
T ˆCov[X, Y]t (C.2.6)

thus the correlation estimation remain unchanged regardless of time-scaling.

The covariance matrix Cov ∈ Rnxn for n assets is of interest and defined as

Cov =

Cov[X1, X1] · · · Cov[X1, Xn]
...

Cov[Xn, X1] · · · Cov[Xn, Xn]

 . (C.2.7)

To derive the correlation matrix, we have from (C.2.3) that each position (i, j) in C is
simply divided by σiσj determined by the univariate volatility estimating scheme for
i and j respectively.

Hull (2012) specify the condition for a covariance matrix to be internally consistent as

wTCovw ≥ 0. (C.2.8)

where w ∈ Rn×1 describe weights of portfolio constituents, and as such (C.2.8) corre-
sponds to the portfolio variance, σ2

p. The condition is intuitive from the definition of
variance, i.e. the variance of a portfolio’s returns has to be non-negative. A matrix
that satisfies (C.2.8) is called a positive semidefinite matrix.

139

Appendix D

Univariate distributions

A common assumption is that financial time series follows a Geometric Brownian Mo-
tion (GBM), where the assumption is made that the returns are normally distributed.
As described in Section 3.1.2 this is not necessarily the case for financial time series
as these exhibit heavy tails. However, remember also the property of aggregational
gaussanity, which means that when the time period for which a return is calculated is
increased, the distribution of the returns are increasingly normally distributed (Cont,
2001). A student’s t process is a similiar process that contrary to GBM accomodates
heavier tails, a property that is shared with the GARCH-Poisson process. Below, these
three processes will be described.

D.1 Geometric Brownian Motion (GBM)

Hull (2009) describes that the continuous price change, dS, of an asset with price S
during the time dt is often assumed to follow a GBM such as

dS = µSdt+ σSdz (D.1.1)

where µ is the expected return, σ is the expected volatility, dz =
√
dtε is a Wiener

process, i.e. the increments are independent and normally distributed ε ∼ N(0, 1)
with a continuous path that starts at 0. A time discretized version of the percentual
return using (D.1.1) is defined by

∆S

S
= µ∆t+ σ

√
∆tε (D.1.2)

where ∆S = S∆t − S is the absolute price change between the price, after time incre-
ment ∆t, S∆t, and S.The asset price trajectory can be simulated during the period
N∆t by repeatedly drawing random variates from ε ∼ N(0, 1) N times.

In order to model a variable that is log-normally distributed (i.e. a normal distribution
of the log-return, see Section 3.3) one can utilize Itô’s lemma (Hull, 2009) to receive
the process

140

D.2. STUDENT’S T DISTRIBUTION

d lnS =
(
µ− σ2

2

)
dt+ σdz (D.1.3)

which is discretized to

ln
(S∆t

S

)
=
(
µ− σ2

2

)
∆t+ σ

√
∆tε. (D.1.4)

where S∆t is the price after the time increment ∆t. Generally, by assuming that the
GBM holds, one assumes that an underlying stochastic variable is normally distributed
X ∼ N(µ, σ) with probability density function (PDF)

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (D.1.5)

(Blom et al., 2005)

D.2 Student’s t distribution

The student’s t distribution can deal with heavy tails, which is a characteristic of
many financial times series (see Section 3.1.2). The student’s t distribution has an
extra parameter which is the degrees of freedom v. When v →∞ the student’s t dis-
tribution converges to the normal distribution. By letting the stochastics in the GBM
be explained by a random variate ε ∼ t(v, 0, 1) one can model underlying stochastic
variables that are student’s t distributed. The PDF for the student’s t distributed
variable X is given by

fX(x) =
Γ(v+1

2
)

√
nπΓ(v

2
)(1 + x2

v
)

(v+1)
2

, Γ(t) =

∫ ∞
0

xt−1e−xdx (D.2.1)

(Blom et al., 2005)

D.3 GARCH-Poisson process

Blomvall (2013) introduces the GARCH-Poisson process which accomodates heavy
tails as well as models sparse jumps in the asset returns. The GARCH-Poisson process
for log-returns with time step ∆t is given by

ln
(Si+1

Si

)
= µi∆t+ σiε

√
∆t+ ∂σi

√
hξ
√

∆t

σ2
i+1 = β0 + β1σ

2
i + β2

(ln(Si+1

Si
)− γ∆t)2

∆t
ε ∼ N(0, 1), ξ ∼ N(0, 1), h ∼ Po(λ∆t)

(D.3.1)

141

APPENDIX D. UNIVARIATE DISTRIBUTIONS

where ∂ and λ are parameters, βi, i = 0, 1, 2 are weights for updating the volatility.
The ε term models the effect of continuous information flow to the the market on the
asset return. However, some news are less frequent, and creates jumps in the asset
returns, e.g. company specific information. Such information is modelled by ξ which
is scaled by ∂

√
h.

The probability density function fXi(xi) for a stochastic variable Xi that follows a
GARCH-Poisson process is given by

fXi(xi) =
1√

2πσ2
i ∆t

e−λ∆t

∞∑
k=0

1√
1 + ∂2k

e
− 1

2

(xi−µi∆t)
2

σ2
i

(1+∂2k)∆t
(λ∆t)k

k!
(D.3.2)

The parameters in the probability function can be estimated using MLE. In order to
be able to use QQ-plots and Monte Carlo simulation for the GARCH-Poisson process,
the cumulative distribution function is needed to invert random variates and is given
by

FXi(xi) =
∞∑
k=0

N

(
xi − µi∆t

σi
√

(1 + ∂2l)∆t

)
(λ∆t)k

k!
e−λ∆t (D.3.3)

where N(·) is the cumulative distribution function for a standard normal distribution
(i.e. expected value 0 and variance 1).

142

Appendix E

Plots for different error functions

E.1 Plots for different exponents

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.01316 & Training Mean: 0.073496

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.1: Prediction plot and error histogram of error function J = |y − ŷ|0.1

143

APPENDIX E. PLOTS FOR DIFFERENT ERROR FUNCTIONS

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.0104 & Training Mean: 0.055338

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.2: Prediction plot and error histogram of error function J = |y − ŷ|0.5

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.035393 & Training Mean: 0.04705

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.3: Prediction plot and error histogram of error function J = |y − ŷ|

144

E.1. PLOTS FOR DIFFERENT EXPONENTS

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.066584 & Training Mean: 0.025269

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.4: Prediction plot and error histogram of error function J = |y − ŷ|2

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.071618 & Training Mean: -0.0023758

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.5: Prediction plot and error histogram of error function J = |y − ŷ|6

145

APPENDIX E. PLOTS FOR DIFFERENT ERROR FUNCTIONS

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.030555 & Training Mean: 0.0035685

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.1.6: Prediction plot and error histogram of error function J = |y − ŷ|26

E.2 Plots for different CAPM regularization coeffi-
cient

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0

 Training Std: 0.036179 & Training Mean: 0.03053

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.1: Prediction plot and error histogram of error function J = |y − ŷ|2

146

E.2. PLOTS FOR DIFFERENT CAPM REGULARIZATION COEFFICIENT

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 0.5

 Training Std: 0.02596 & Training Mean: 0.028504

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.2: Prediction plot and error histogram of error function J = |y − ŷ|2 +
0.5(|ycapm − rf − ŷ|)2

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 1

 Training Std: 0.014386 & Training Mean: 0.023121

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.3: Prediction plot and error histogram of error function J = |y − ŷ|2 +
(|ycapm − rf − ŷ|)2

147

APPENDIX E. PLOTS FOR DIFFERENT ERROR FUNCTIONS

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 1.5

 Training Std: 0.013188 & Training Mean: 0.024168

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.4: Prediction plot and error histogram of error function J = |y − ŷ|2 +
1.5(|ycapm − rf − ŷ|)2

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 2

 Training Std: 0.012014 & Training Mean: 0.023551

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.5: Prediction plot and error histogram of error function J = |y − ŷ|2 +
2(|ycapm − rf − ŷ|)2

148

E.2. PLOTS FOR DIFFERENT CAPM REGULARIZATION COEFFICIENT

1990 1995 2000 2005 2010
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SwedishEquity in-sample

Prediction

Target

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

 CAPM term: 4

 Training Std: 0.010655 & Training Mean: 0.021078

Target Std: 0.11865 & Target Mean: 0.027988

Figure E.2.6: Prediction plot and error histogram of error function J = |y − ŷ|2 +
4(|ycapm − rf − ŷ|)2

149

Appendix F

Resulting networks

Table F.0.1 presents the hyper-parameter-optimized neural networks. The "# pot.
inp." field refer to the number of potential inputs, the "# PC red. inp." field refer to
the number of inputs where the null-hypothesis of the Peasron correlation test could be
rejected, "# Exp. degr." field refer to the chosen explanation degree of the PCA which
gave the corresponding number of eigenvectors "# Eig.vec.", and the "Architecture"
field refer to the chosen architecture where (x), (x,y), (x,y,z) refer to one, two and
three hidden layers respectively, with x,y,z number of hidden neurons in each hidden
layer. The λCAPM/RW column contain the CAPM/RW regularization coefficient.

Table F.0.1: Properties of the hyper-paramter-optimized neural networks.

BBG Ticker Points # pot. inp. # PC red. inp. Exp. degr. # Eig.vec. Architecture λCAPM/RW

OMX 1337 32 19 1.000 19 ’(5)’ 1.0
MXWO 1337 32 25 1.000 25 ’(12,1)’ 1.1
RXBO 829 52 35 0.975 23 ’(4,1)’ 2.0
RXRE 826 53 31 0.995 27 ’(12,5)’ 1.5
RXVX 829 52 48 1.000 48 ’(11,3)’ 0.0
HE00 763 55 41 0.995 32 ’(10,1)’ 1.5
LEGATRUU 1176 37 23 1.000 23 ’(8,1)’ 4.0
JGENBDUU 502 63 31 0.995 23 ’(11,4)’ 1.7
MXWO0RE 920 46 28 0.995 25 ’(10,1)’ 1.9
BCOMTR 1128 40 25 0.995 23 ’(8,2)’ 1.1
HFRXM 755 58 40 1.000 40 ’(1)’ 2.0
HFRXAR 759 56 38 1.000 38 ’(3,4)’ 1.6
USDSEK 2171 21 13 0.900 6 ’(1,4,1)’ 0.6
EURSEK 1233 34 21 1.000 21 ’(8,1)’ 0.5
JPYSEK 2171 21 13 0.900 7 ’(12,5)’ 0.1

150

Ta
bl
e
F
.0
.2
:
U
se
d
in
pu

ts
to

th
e
P
C
A

fo
r
in
de
x
1-
8
in
cl
ud

in
g
P
ea
rs
on

co
rr
el
at
io
ns
.
T
he

po
rt
fo
lio

co
ns
ti
tu
en
ts

ar
e
pr
es
en
te
d
in

th
e

co
lu
m
ns
,a

nd
th
e
po

te
nt
ia
li
np

ut
s
in

th
e
ro
w
s.

A
nu

m
be

r
in

a
ce
ll
m
ea
ns

th
at

th
e
in
pu

t
is

us
ed

as
an

in
pu

t
to

th
e
ne
tw

or
k,

an
d
th
e

nu
m
be

r
co
rr
es
po

nd
s
to

th
e
P
ea
rs
on

co
rr
el
at
io
n.

T
he

in
pu

ts
th
at

w
er
e
no

t
us
ed

as
in
pu

ts
ar
e
m
ar
ke
d
w
it
h
"-
".

In
pu

t
O
M
X

M
X
W
O

R
X
B
O

R
X
R
E

R
X
V
X

H
E
00

LE
G
A
T
R
U
U

JG
E
N
B
D
U
U

Sw
ed
is
hE

qu
ity

-
-

-0
.2
0

-0
.0
6

0.
10

0.
19

-0
.1
1

-0
.0
8

G
lo
ba

lE
qu

ity
0.
15

-
-0
.1
8

-0
.1
2

0.
10

-
-

-0
.1
1

In
te
re
st
R
at
e

-
-

-
-

-0
.0
6

0.
17

-
0.
11

In
fla

ti
on

-
-

-
-

-
-

-
0.
12

C
as
h

-
-

-0
.1
1

-
-

0.
10

-
-

C
re
di
t

-
-

-
-

-
-

-
-0
.1
1

G
lo
ba

lB
on

d
-

-
0.
10

-
-0
.1
4

-0
.0
6

-
-

E
m
er
gi
ng

M
ar
ke
tC

ur
re
nc
yB

on
d

-
-

-
-

-
-

-
-

R
ea
lE
st
at
e

-
-

-0
.2
1

-0
.0
6

0.
16

-
-

-0
.1
5

C
om

m
od

ity
-

-
-0
.2
0

0.
07

0.
17

-
-

-0
.1
4

C
TA

-
-

-
-

-
-

-
-

A
bs
ol
ut
eR

et
ur
n

-
-

-
-

-
-

-
-

JP
Y
SE

K
0.
16

0.
05

0.
12

-
-0
.1
7

-
0.
16

0.
08

E
U
R
SE

K
-

-
0.
07

-0
.0
9

-
-0
.0
8

0.
15

-
U
SD

SE
K

0.
09

-
-

-0
.1
0

-0
.1
8

-0
.1
3

0.
21

0.
11

1M
R
et
ur
nL

ag
1M

0.
10

-
0.
14

-0
.0
6

0.
32

0.
19

0.
12

-
1M

R
et
ur
nL

ag
2M

0.
05

0.
05

0.
06

-
0.
25

0.
12

0.
05

-
1M

R
et
ur
nL

ag
3M

-
0.
08

-
0.
06

0.
25

0.
15

-
-

1M
R
et
ur
nL

ag
4M

-
0.
08

-0
.0
8

0.
07

0.
26

0.
09

-0
.0
5

-
1M

R
et
ur
nL

ag
5M

-
-

-0
.1
0

-
0.
30

-
-

-
1M

R
et
ur
nL

ag
6M

-
-

-0
.1
2

-0
.0
9

0.
31

-0
.1
1

-
-

1M
R
et
ur
nL

ag
7M

-
0.
05

-0
.0
9

-0
.0
7

0.
30

-0
.0
8

-
-0
.0
9

1M
R
et
ur
nL

ag
8M

0.
07

0.
08

-0
.0
6

-
0.
30

-
-0
.0
7

-0
.1
6

1M
R
et
ur
nL

ag
9M

0.
07

0.
09

-
-

0.
31

-
-

-0
.1
7

1Q
R
et
ur
nL

ag
1Q

0.
09

0.
09

0.
11

-
0.
42

0.
23

0.
10

-
1Q

R
et
ur
nL

ag
2Q

-
0.
05

-0
.1
6

-
0.
40

-
-0
.0
7

-
1Q

R
et
ur
nL

ag
3Q

0.
09

0.
12

-0
.0
8

-
0.
38

-
-0
.0
9

-0
.2
5

In
ko

ps
ch
ef
si
nd

ex
0.
06

0.
06

0.
11

0.
19

0.
24

-0
.0
6

-0
.0
5

-
U
SP

ro
du

ct
io
n

0.
08

0.
12

-
-

0.
19

-0
.1
7

-
-0
.1
4

JP
Y
In
du

st
ri
al
P
ro
du

ct
io
n

-
-0
.0
8

-
0.
09

-
-0
.2
7

0.
05

-
C
hi
na

P
ro
du

ct
io
n

-
-

-
0.
16

-
-

-
-

Ta
bl
e
co
nt
in
ue
s
on

ne
xt

pa
ge

151

APPENDIX F. RESULTING NETWORKS

In
pu

t
O
M
X

M
X
W
O

R
X
B
O

R
X
R
E

R
X
V
X

H
E
00

LE
G
A
T
R
U
U

JG
E
N
B
D
U
U

E
U
R
P
ro
du

ct
io
n

-
-

-
0.
06

0.
21

-
-

-0
.1
3

E
xp

or
t

-
-

-
-

-
-

-
-

U
SC

on
su
m
er
C
on

fid
en
ce

-
-

-0
.0
6

-
0.
48

-0
.2
6

-
-

G
D
P
U
S

-
0.
05

0.
06

0.
13

0.
40

-0
.2
5

0.
07

-
E
U
R
G
D
P

-
-

-0
.1
2

-
0.
28

-0
.3
6

-
-

SW
E
G
D
P

-0
.1
8

-0
.2
5

-
-

0.
11

-0
.3
5

-0
.1
2

-0
.1
3

C
H
G
D
P

-
-

-
0.
07

-0
.3
7

-0
.2
3

-
-

JP
Y
G
D
P

-
-

-0
.1
4

-
0.
08

-0
.0
7

-
-

U
ne
m
pl
oy

m
en
tU

S
0.
06

0.
07

0.
10

0.
08

-0
.3
2

0.
31

-
-

E
U
R
U
ne
m
pl
oy

m
en
t

-
-

-
-

-
0.
31

-
-0
.1
5

C
H
U
ne
m
pl
oy

m
en
t

-
-

-
-

-
-

-
-

JP
Y
U
ne
m
pl
oy

m
en
t

-
-

-
-

-
-

-
-

U
SM

on
ey
Su

pp
ly

-
0.
06

0.
08

-
-0
.3
7

0.
31

-
-

C
H
M
on

ey
Su

pp
ly

-
-

0.
07

0.
24

0.
18

-
-

-
E
U
R
M
on

ey
su
pp

ly
0.
24

0.
19

-0
.1
2

-
0.
52

0.
32

-0
.1
5

-
JP

Y
M
on

ey
Su

pp
ly

-
-

-
-

-
-

-
-0
.1
6

U
SI
nfl

at
io
n

-0
.1
5

-0
.1
2

0.
11

-
-0
.1
1

-0
.5
1

0.
27

0.
18

JP
Y
In
fla

ti
on

-0
.0
7

-0
.0
5

0.
12

-0
.0
9

-0
.2
4

-0
.2
5

0.
16

0.
10

E
U
R
In
fla

ti
on

-
-

0.
13

-
-0
.2
6

-0
.4
4

-
0.
10

C
H
In
fla

ti
on

-
-

0.
09

0.
10

-0
.4
3

-0
.2
6

-
-

B
al
ti
cD

ry
In
de
x

-0
.1
4

-0
.1
4

-
0.
07

-0
.1
6

-0
.2
1

-
0.
10

SW
E
K
on

ju
nk

tu
rb
ar
om

et
er
n

-
-

-
0.
06

0.
11

-0
.2
6

-
-0
.1
3

P
E
M
SC

IW
or
ld

-
-

-
0.
11

0.
49

-
-

0.
10

U
S1

0Y
Y
ie
ld
s

-
-0
.0
6

-
0.
12

0.
44

-0
.2
9

0.
11

0.
14

U
S3

Y
Y
ie
ld
s

-
-0
.0
5

-
-

0.
36

-0
.3
0

0.
10

0.
10

U
S3

M
Y
ie
ld
s

-
-

-0
.1
0

-0
.0
7

0.
31

-0
.2
6

-
-

JP
Y
10
Y
Y
ie
ld
s

-0
.0
6

-0
.0
7

-
0.
17

0.
13

-0
.2
0

0.
08

0.
12

JP
Y
3Y

Y
ie
ld
s

-
-

-
-

-0
.1
1

-0
.2
3

0.
08

-
JP

Y
3M

Y
ie
ld
s

-0
.1
0

-0
.1
0

0.
09

-0
.0
7

-0
.3
9

-0
.1
5

0.
09

0.
08

E
U
R
10
Y
Y
ie
ld
s

-
-

0.
17

0.
22

0.
39

-0
.3
1

-
0.
18

E
U
R
3Y

Y
ie
ld
s

-
-

0.
11

0.
13

0.
33

-0
.4
1

-
0.
14

E
U
R
3M

Y
ie
ld
s

-
-

-
-

-
-

-
0.
13

C
N
10
Y
Y
ie
ld
s

-
-

-
-

-
-

-
-

C
N
3Y

Y
ie
ld
s

-
-

-
-

-
-

-
-

C
N
3M

Y
ie
ld
s

-
-

-
-0
.0
8

-
-0
.2
0

-
-

152

Ta
bl
e
F
.0
.3
:
U
se
d
in
pu

ts
to

th
e
P
C
A

fo
r
in
de
x
9-
15

in
cl
ud

in
g
P
ea
rs
on

co
rr
el
at
io
ns
.
T
he

po
rt
fo
lio

co
ns
ti
tu
en
ts

ar
e
pr
es
en
te
d
in

th
e

co
lu
m
ns
,a

nd
th
e
po

te
nt
ia
li
np

ut
s
in

th
e
ro
w
s.

A
nu

m
be

r
in

a
ce
ll
m
ea
ns

th
at

th
e
in
pu

t
is

us
ed

as
an

in
pu

t
to

th
e
ne
tw

or
k,

an
d
th
e

nu
m
be

r
co
rr
es
po

nd
s
to

th
e
P
ea
rs
on

co
rr
el
at
io
n.

T
he

in
pu

ts
th
at

w
er
e
no

t
us
ed

as
in
pu

ts
ar
e
m
ar
ke
d
w
it
h
"-
".

In
pu

t
M
X
W
O
0R

E
B
C
O
M
T
R

H
F
R
X
M

H
F
R
X
A
R

JP
Y
SE

K
E
U
R
SE

K
U
SD

SE
K

Sw
ed
is
hE

qu
ity

0.
06

0.
14

-0
.1
4

-
-

-0
.2
2

-
G
lo
ba

lE
qu

ity
-

0.
11

-
-

-
-0
.1
3

-
In
te
re
st
R
at
e

-
-

0.
14

0.
11

-
-

-
In
fla

ti
on

-
-

0.
07

0.
10

-
-

-
C
as
h

-
-

0.
07

0.
13

-
-

-
C
re
di
t

-
-

-0
.2
2

-0
.0
7

-
-

-
G
lo
ba

lB
on

d
-0
.1
0

-0
.0
8

0.
15

-
-

-
-

E
m
er
gi
ng

M
ar
ke
tC

ur
re
nc
yB

on
d

-
-

-
-

-
-

-
R
ea
lE
st
at
e

-
-

-0
.0
9

-
-

-
-

C
om

m
od

ity
0.
11

-
-0
.0
9

-
-

-
-

C
TA

-
-

-
-

-
-

-
A
bs
ol
ut
eR

et
ur
n

-
-

0.
12

-
-

-
-

JP
Y
SE

K
-0
.1
3

-
0.
14

-
-

0.
11

0.
04

E
U
R
SE

K
-0
.0
9

-0
.1
1

0.
12

-
-

-
-

U
SD

SE
K

-0
.0
9

-0
.0
9

0.
14

0.
06

0.
16

0.
12

-
1M

R
et
ur
nL

ag
1M

-
-

-
-

0.
15

0.
05

0.
07

1M
R
et
ur
nL

ag
2M

-
0.
08

-
-

0.
10

-
0.
05

1M
R
et
ur
nL

ag
3M

0.
07

0.
06

-
0.
09

0.
05

-
0.
06

1M
R
et
ur
nL

ag
4M

0.
07

-
-

0.
08

-
-0
.0
8

-
1M

R
et
ur
nL

ag
5M

-
-

-
0.
07

-0
.0
6

-0
.0
5

-
1M

R
et
ur
nL

ag
6M

-
-

-0
.0
7

-
-0
.0
5

-
-0
.0
4

1M
R
et
ur
nL

ag
7M

0.
13

0.
07

-
-0
.0
7

-
-

-
1M

R
et
ur
nL

ag
8M

0.
14

-
-

-0
.1
4

-
-

-
1M

R
et
ur
nL

ag
9M

-
-

-
-0
.0
8

-
-

-
1Q

R
et
ur
nL

ag
1Q

-
0.
08

0.
08

0.
08

0.
16

0.
06

0.
10

1Q
R
et
ur
nL

ag
2Q

-
-

-
0.
09

-0
.0
6

-0
.0
7

-
1Q

R
et
ur
nL

ag
3Q

0.
18

-
-

-0
.1
7

-
-

-
In
ko

ps
ch
ef
si
nd

ex
-

0.
08

-
-

-
-

-0
.1
1

U
SP

ro
du

ct
io
n

-
0.
10

0.
14

0.
15

-
-

-0
.0
5

JP
Y
In
du

st
ri
al
P
ro
du

ct
io
n

-0
.0
8

0.
09

0.
17

0.
18

-
-0
.0
5

-
C
hi
na

P
ro
du

ct
io
n

0.
06

0.
06

-0
.1
2

-0
.0
9

-
-

-
Ta

bl
e
co
nt
in
ue
s
on

ne
xt

pa
ge

153

APPENDIX F. RESULTING NETWORKS

In
pu

t
M
X
W
O
0R

E
B
C
O
M
T
R

H
F
R
X
M

H
F
R
X
A
R

JP
Y
SE

K
E
U
R
SE

K
U
SD

SE
K

E
U
R
P
ro
du

ct
io
n

0.
06

-
-

-
-

-
-

E
xp

or
t

-
-

-
-

-
-

-
U
SC

on
su
m
er
C
on

fid
en
ce

-
0.
13

0.
27

0.
24

-
-

-
G
D
P
U
S

-
0.
17

0.
27

0.
27

0.
06

0.
11

0.
04

E
U
R
G
D
P

-0
.0
6

-
0.
20

0.
20

-
-

-
SW

E
G
D
P

-0
.2
0

-
0.
16

0.
11

-
-

-
C
H
G
D
P

-0
.0
8

-
-

-0
.0
7

-
-

-
JP

Y
G
D
P

0.
15

0.
21

-
0.
10

-
-0
.0
5

-
U
ne
m
pl
oy

m
en
tU

S
0.
10

-0
.0
6

-0
.2
9

-0
.2
4

0.
12

-0
.1
3

0.
08

E
U
R
U
ne
m
pl
oy

m
en
t

-
-

-0
.1
2

-
-

-
-

C
H
U
ne
m
pl
oy

m
en
t

-
-

-
-

-
-

-
JP

Y
U
ne
m
pl
oy

m
en
t

-
-

-
-

-
-

-
U
SM

on
ey
Su

pp
ly

0.
07

-0
.0
7

-0
.2
4

-0
.1
8

-
-

-
C
H
M
on

ey
Su

pp
ly

-
0.
14

-0
.0
6

-
-

-
-

E
U
R
M
on

ey
su
pp

ly
0.
22

0.
27

-
-

-
-0
.1
5

-
JP

Y
M
on

ey
Su

pp
ly

-
-

-
-

-
-

-
U
SI
nfl

at
io
n

-0
.1
1

-0
.0
7

0.
39

0.
34

0.
07

0.
18

0.
15

JP
Y
In
fla

ti
on

-0
.2
8

-0
.1
8

0.
20

0.
14

-
0.
17

-
E
U
R
In
fla

ti
on

-
-

0.
17

0.
09

-
-

-
C
H
In
fla

ti
on

-
-

-
-

-
-

-
B
al
ti
cD

ry
In
de
x

-0
.1
6

-
-

-
-

-
-

SW
E
K
on

ju
nk

tu
rb
ar
om

et
er
n

-
-

0.
10

0.
11

-
-

-
P
E
M
SC

IW
or
ld

-
-

0.
11

0.
09

-
-

-
U
S1

0Y
Y
ie
ld
s

-
0.
10

0.
22

0.
19

0.
14

0.
12

0.
14

U
S3

Y
Y
ie
ld
s

-
0.
10

0.
27

0.
26

0.
11

0.
11

0.
14

U
S3

M
Y
ie
ld
s

-
-

0.
28

0.
27

-
-

-
JP

Y
10
Y
Y
ie
ld
s

-
0.
07

0.
14

0.
12

-
0.
11

-
JP

Y
3Y

Y
ie
ld
s

-0
.1
0

-
0.
11

0.
11

-
0.
11

-
JP

Y
3M

Y
ie
ld
s

-0
.2
6

-
0.
15

-
-

0.
11

-
E
U
R
10
Y
Y
ie
ld
s

-0
.1
1

-
0.
19

0.
13

-
-

-
E
U
R
3Y

Y
ie
ld
s

-0
.1
8

-
0.
25

0.
19

-
-

-
E
U
R
3M

Y
ie
ld
s

-
-

0.
33

-
-

-
-

C
N
10
Y
Y
ie
ld
s

-
-

-
-

-
-

-
C
N
3Y

Y
ie
ld
s

-
-

-
-

-
-

-
C
N
3M

Y
ie
ld
s

-
-

0.
24

0.
23

-
-

-

154

Appendix G

Out-of-sample performance

G.1 Plots of out-of-sample predictions

2014 2015 2016 2017

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

SwedishEquity out-of-sample

NN-Estimation

Actual

-0.1 -0.05 0 0.05 0.1 0.15 0.2

0

5

10

15

20

25

30

SwedishEquity

 Estimation Std: 0.0045457 & Estimation Mean: 0.032223

Actual Std: 0.060037 & Actual Mean: 0.024742

Figure G.1.1: OMX Index

155

APPENDIX G. OUT-OF-SAMPLE PERFORMANCE

2014 2015 2016 2017

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

GlobalEquity out-of-sample

NN-Estimation

Actual

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0

5

10

15

20

25

GlobalEquity

 Estimation Std: 0.0019284 & Estimation Mean: 0.018935

Actual Std: 0.05813 & Actual Mean: 0.032816

Figure G.1.2: MXWO Index

2014 2015 2016 2017

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

InterestRate out-of-sample

NN-Estimation

Actual

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

0

2

4

6

8

10

12

14

16

18

InterestRate

 Estimation Std: 0.0025525 & Estimation Mean: 0.00085572

Actual Std: 0.0099529 & Actual Mean: 0.006715

Figure G.1.3: RXBO Index

156

G.1. PLOTS OF OUT-OF-SAMPLE PREDICTIONS

2014 2015 2016 2017

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Inflation out-of-sample

NN-Estimation

Actual

-0.06 -0.04 -0.02 0 0.02 0.04

0

5

10

15

20

25

Inflation

 Estimation Std: 0.0034655 & Estimation Mean: -0.00070933

Actual Std: 0.020082 & Actual Mean: 0.0088973

Figure G.1.4: RXRE Index

2014 2015 2016 2017

-4

-3

-2

-1

0

1

2

3
10

-3 Cash out-of-sample

NN-Estimation

Actual

-3 -2.5 -2 -1.5 -1 -0.5 0

10
-3

0

5

10

15

20

25

Cash

 Estimation Std: 0.0010821 & Estimation Mean: -0.0014912

Actual Std: 0.0014234 & Actual Mean: -0.00017089

Figure G.1.5: RXVX Index

157

APPENDIX G. OUT-OF-SAMPLE PERFORMANCE

2014 2015 2016 2017

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Credit out-of-sample

NN-Estimation

Actual

-0.02 0 0.02 0.04 0.06 0.08

0

5

10

15

20

25

Credit

 Estimation Std: 0.011036 & Estimation Mean: 0.021842

Actual Std: 0.019841 & Actual Mean: 0.014158

Figure G.1.6: HE00 Index

2014 2015 2016 2017

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

GlobalBond out-of-sample

NN-Estimation

Actual

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

0

5

10

15

20

25

GlobalBond

 Estimation Std: 0.0017722 & Estimation Mean: -0.0048037

Actual Std: 0.035011 & Actual Mean: 0.020663

Figure G.1.7: LEGATRUU Index

158

G.1. PLOTS OF OUT-OF-SAMPLE PREDICTIONS

2014 2015 2016 2017

-0.1

-0.05

0

0.05

0.1

0.15

EmergingMarketCurrencyBond out-of-sample

NN-Estimation

Actual

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

14

16

18

EmergingMarketCurrencyBond

 Estimation Std: 0.0024603 & Estimation Mean: 0.0041258

Actual Std: 0.04678 & Actual Mean: 0.017522

Figure G.1.8: JGENBDUU Index

2014 2015 2016 2017

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

RealEstate out-of-sample

NN-Estimation

Actual

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

0

5

10

15

20

25

RealEstate

 Estimation Std: 0.0044685 & Estimation Mean: 0.0084128

Actual Std: 0.065158 & Actual Mean: 0.026738

Figure G.1.9: MXWO0RE Index

159

APPENDIX G. OUT-OF-SAMPLE PERFORMANCE

2014 2015 2016 2017

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Commodity out-of-sample

NN-Estimation

Actual

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

0

5

10

15

20

25

Commodity

 Estimation Std: 0.0049878 & Estimation Mean: 0.01557

Actual Std: 0.063377 & Actual Mean: -0.0057488

Figure G.1.10: BCOMTR Index

2014 2015 2016 2017

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

CTA out-of-sample

NN-Estimation

Actual

-0.15 -0.1 -0.05 0 0.05

0

5

10

15

CTA

 Estimation Std: 0.0020693 & Estimation Mean: -0.017292

Actual Std: 0.057094 & Actual Mean: 0.018666

Figure G.1.11: HFRXM Index

160

G.1. PLOTS OF OUT-OF-SAMPLE PREDICTIONS

2014 2015 2016 2017

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

AbsoluteReturn out-of-sample

NN-Estimation

Actual

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

0

2

4

6

8

10

12

14

16

18

AbsoluteReturn

 Estimation Std: 0.011458 & Estimation Mean: -0.0098763

Actual Std: 0.043188 & Actual Mean: 0.022979

Figure G.1.12: HFRXAR Index

2014 2015 2016 2017

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

JPYSEK out-of-sample

NN-Estimation

Actual

-0.1 -0.05 0 0.05 0.1

0

5

10

15

20

25

JPYSEK

 Estimation Std: 0.0021275 & Estimation Mean: 0.0037821

Actual Std: 0.049482 & Actual Mean: 0.011082

Figure G.1.13: JPYSEK Index

161

APPENDIX G. OUT-OF-SAMPLE PERFORMANCE

2014 2015 2016 2017

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

EURSEK out-of-sample

NN-Estimation

Actual

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

16

18

EURSEK

 Estimation Std: 0.0013668 & Estimation Mean: -0.0078495

Actual Std: 0.019173 & Actual Mean: 0.0060384

Figure G.1.14: EURSEK Index

2014 2015 2016 2017

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

USDSEK out-of-sample

NN-Estimation

Actual

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

0

5

10

15

20

25

USDSEK

 Estimation Std: 0.014983 & Estimation Mean: -0.013665

Actual Std: 0.043085 & Actual Mean: 0.019113

Figure G.1.15: USDSEK Index

162

